Ruled and Rotational Surfaces Generated by Non-Null Curves with Zero Weighted Curvature in (L 3 , ax2 + by2 )
dc.authorid | 0000-0002-1959-6102 | en_US |
dc.authorid | Non-Null Curves | en_US |
dc.contributor.author | Altın, Mustafa | |
dc.contributor.author | Kazan, Ahmet | |
dc.contributor.author | Karadağ, Hacı Bayram | |
dc.date.accessioned | 2021-07-13T20:19:47Z | |
dc.date.available | 2021-07-13T20:19:47Z | |
dc.date.issued | 2020 | en_US |
dc.department | MTÖ Üniversitesi, Doğanşehir Vahap Küçük Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü | en_US |
dc.description.abstract | In this study, firstly we give the weighted curvatures of non-null planar curves in Lorentz-Minkowski space with density e^(ax2+by2) and we obtain the planar curves whose weighted curvatures vanish in this space according to the cases of not all zero constants a and b. After giving the Frenet vectors of the non-null planar curves with zero weighted curvature in Lorentz-Minkowski space with density e^(ax2), we create the Smarandache curves of them. With the aid of these curves and their Smarandache curves, we get the ruled surfaces whose base curves are non-null curves with vanishing weighted curvature and ruling curves are Smarandache curves of them. Followingly, we give some characterizations for these ruled surfaces by obtaining the mean and Gaussian curvatures, distribution parameters and striction curves of them. Also, rotational surfaces which are generated by non-null planar curves with zero weighted curvatures in Lorentz-Minkowski space E^3_1 with density e^(ax2+by2) are studied according to some cases of not all zero constants a and b. We draw the graphics of obtained surfaces. | en_US |
dc.description.sponsorship | İnönü Üniversitesi BAP - Proje Numarası FDK-2018-1349 | en_US |
dc.identifier.citation | Altın, M., Kazan, A., Karadağ, H. (2020). Ruled and rotational surfaces generated by non-null curves with zero weighted curvature in ((Formula presented), ax2 + by2) International Electronic Journal of Geometry, 13 (2), 11-29. | en_US |
dc.identifier.doi | 10.36890/iejg.599817 | |
dc.identifier.endpage | 29 | en_US |
dc.identifier.issn | 1307-5624 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 11 | en_US |
dc.identifier.uri | https://doi.org/10.36890/iejg.599817 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12899/280 | |
dc.identifier.volume | 13 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Kazan, Ahmet | |
dc.language.iso | en | en_US |
dc.publisher | Kazım İlarslan | en_US |
dc.relation.ispartof | International Electronic Journal of Geometry | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Weighted curvature | en_US |
dc.subject | Lorentz-Minkowski space | en_US |
dc.subject | Spacelike and timelike curves | en_US |
dc.subject | Ruled surface | en_US |
dc.subject | Rotational surface | en_US |
dc.title | Ruled and Rotational Surfaces Generated by Non-Null Curves with Zero Weighted Curvature in (L 3 , ax2 + by2 ) | en_US |
dc.type | Article | en_US |