A chaotic optimization method based on logistic-sine map for numerical function optimization

dc.authorid0000-0001-9095-5166en_US
dc.contributor.authorFahrettin Burak
dc.contributor.authorTuncer, Türker
dc.contributor.authorKocamaz, Adnan Fatih
dc.date.accessioned2021-09-02T18:16:47Z
dc.date.available2021-09-02T18:16:47Z
dc.date.issued2020en_US
dc.departmentMTÖ Üniversitesi, Doğanşehir Vahap Küçük Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümüen_US
dc.description.abstractMeta-heuristic optimization algorithms have been used to solve mathematically unidentifiable problems. The main purpose of the optimization methods on problem-solving is to choose the best solution in predefined conditions. To increase performance of the optimization methods, chaotic maps for instance Logistic, Singer, Sine, Tent, Chebyshev, Circle have been widely used in the literature. However, hybrid 1D chaotic maps have higher performance than the 1D chaotic maps. The hybrid chaotic maps have not been used in the optimization process. In this article, 1D hybrid chaotic map (logistic-sine map)-based novel swarm optimization method is proposed to achieve higher numerical results than other optimization methods. Logistic-sine map has good statistical result, and this advantage is used directly to calculate global optimum value in this study. The proposed algorithm is a swarm-based optimization algorithm, and the seed value of the logistic-sine map is generated from local best solutions to reach global optimum. In order to test the proposed hybrid chaotic map-based optimization method, widely used numerical benchmark functions are chosen. The proposed chaotic optimization method is also tested on compression spring design problem. Results and comparisons clearly show that the proposed chaotic optimization method is successful.en_US
dc.identifier.citationDemir, F. B., Tuncer, T., & Kocamaz, A. F. (2020). A chaotic optimization method based on logistic-sine map for numerical function optimization. Neural Computing and Applications, 32(17), 14227-14239.en_US
dc.identifier.doi10.1007/s00521-020-04815-9
dc.identifier.endpage14239en_US
dc.identifier.issn0941-0643en_US
dc.identifier.issue17en_US
dc.identifier.scopus2-s2.0-85081591433en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage14227en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-020-04815-9
dc.identifier.uri1433-3058
dc.identifier.urihttps://hdl.handle.net/20.500.12899/383
dc.identifier.volume32en_US
dc.identifier.wosWOS:000560557000072en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorDemir, Fahrettin Burak
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChaotic optimizationen_US
dc.subjectLogistic-sine mapen_US
dc.subjectSwarm-based optimizationen_US
dc.subjectChaosen_US
dc.titleA chaotic optimization method based on logistic-sine map for numerical function optimizationen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Fahrettin Burak Demir - Makale Dosyası.pdf
Boyut:
1.9 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Full Text / Tam Metin
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: