Radiomics and deep learning approach to the differential diagnosis of parotid gland tumors
dc.authorid | 0000-0002-2917-3736 | en_US |
dc.contributor.author | Gündüz, Emrah | |
dc.contributor.author | Alçin, Ömer Faruk | |
dc.contributor.author | Kızılay, Ahmet | |
dc.contributor.author | Piazza, Cesare | |
dc.date.accessioned | 2022-04-06T08:36:59Z | |
dc.date.available | 2022-04-06T08:36:59Z | |
dc.date.issued | 2022 | en_US |
dc.department | MTÖ Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | All studies aimed at the differential diagnosis of benign vs. malignant PGTs or the identification of the commonest PGT subtypes were identified, and five studies were found that focused on deep learning-based differential diagnosis of PGTs. Data sets were created in three of these studies with MRI and in two with computed tomography (CT). Additional seven studies were related to radiomics. Of these, four were on MRI-based radiomics, two on CT-based radiomics, and one compared MRI and CT-based radiomics in the same patients. | en_US |
dc.identifier.citation | Gündüz, E., Alçin, Ö. F., Kızılay, A., & Piazza, C. (2021). Radiomics and deep learning approach to the differential diagnosis of parotid gland tumors. Current Opinion in Otolaryngology & Head and Neck Surgery. 30(2), 107-113. | en_US |
dc.identifier.doi | 10.1097/MOO.0000000000000782. | |
dc.identifier.endpage | 113 | en_US |
dc.identifier.issn | 1068-9508 | en_US |
dc.identifier.issn | 1531-6998 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.pmid | 34907957 | |
dc.identifier.scopus | 2-s2.0-85125965909 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 107 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12899/914 | |
dc.identifier.volume | 30 | en_US |
dc.identifier.wos | WOS:000765490100006 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.institutionauthor | Alçin, Ömer Faruk | |
dc.language.iso | en | en_US |
dc.publisher | Wolters Kluwer Health | en_US |
dc.relation.ispartof | Current Opinion in Otolaryngology & Head and Neck Surgery | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Parotid gland tumors | en_US |
dc.subject | Radiomics | en_US |
dc.title | Radiomics and deep learning approach to the differential diagnosis of parotid gland tumors | en_US |
dc.type | Article | en_US |