Radiomics and deep learning approach to the differential diagnosis of parotid gland tumors

dc.authorid0000-0002-2917-3736en_US
dc.contributor.authorGündüz, Emrah
dc.contributor.authorAlçin, Ömer Faruk
dc.contributor.authorKızılay, Ahmet
dc.contributor.authorPiazza, Cesare
dc.date.accessioned2022-04-06T08:36:59Z
dc.date.available2022-04-06T08:36:59Z
dc.date.issued2022en_US
dc.departmentMTÖ Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractAll studies aimed at the differential diagnosis of benign vs. malignant PGTs or the identification of the commonest PGT subtypes were identified, and five studies were found that focused on deep learning-based differential diagnosis of PGTs. Data sets were created in three of these studies with MRI and in two with computed tomography (CT). Additional seven studies were related to radiomics. Of these, four were on MRI-based radiomics, two on CT-based radiomics, and one compared MRI and CT-based radiomics in the same patients.en_US
dc.identifier.citationGündüz, E., Alçin, Ö. F., Kızılay, A., & Piazza, C. (2021). Radiomics and deep learning approach to the differential diagnosis of parotid gland tumors. Current Opinion in Otolaryngology & Head and Neck Surgery. 30(2), 107-113.en_US
dc.identifier.doi10.1097/MOO.0000000000000782.
dc.identifier.endpage113en_US
dc.identifier.issn1068-9508en_US
dc.identifier.issn1531-6998en_US
dc.identifier.issue2en_US
dc.identifier.pmid34907957
dc.identifier.scopus2-s2.0-85125965909en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage107en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12899/914
dc.identifier.volume30en_US
dc.identifier.wosWOS:000765490100006en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.institutionauthorAlçin, Ömer Faruk
dc.language.isoenen_US
dc.publisherWolters Kluwer Healthen_US
dc.relation.ispartofCurrent Opinion in Otolaryngology & Head and Neck Surgeryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectDeep learningen_US
dc.subjectMachine learningen_US
dc.subjectParotid gland tumorsen_US
dc.subjectRadiomicsen_US
dc.titleRadiomics and deep learning approach to the differential diagnosis of parotid gland tumorsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale Dosyası.pdf
Boyut:
226.48 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: