New human identification method using Tietze graph-based feature generation
dc.authorid | 0000-0003-1765-7474 | en_US |
dc.contributor.author | Tuncer, Türker | |
dc.contributor.author | Aydemir, Emrah | |
dc.contributor.author | Doğan, Şengül | |
dc.contributor.author | Kobat, Mehmet Ali | |
dc.contributor.author | Kaya, Muhammed Çağrı | |
dc.contributor.author | Metin, Serkan | |
dc.date.accessioned | 2021-08-30T19:58:06Z | |
dc.date.available | 2021-08-30T19:58:06Z | |
dc.date.issued | 2021 | en_US |
dc.department | MTÖ Üniversitesi, Sosyal ve Beşeri Bilimler Fakültesi, Yönetim Bilişim Sistemleri Bölümü | en_US |
dc.description.abstract | Electrocardiogram (ECG) signals have been widely used for disease diagnosis. Besides, the ECG signals can be used for human identification. In this work, a Tietze pattern and neighborhood component analysis (NCA)-based human identification method is proposed. Our model uses two feature generation methods to extract both statistical and textural features. The Tietze graph is considered to create a pattern of the presented local graph structure (LGS). Both statistical and textural feature generations are not enough to present a high-accurate model. Therefore, a multileveled structure must be created. Tunable Q-factor wavelet transform (TQWT) is employed as a decomposer. The generated/extracted features in each level are merged, and the merged features are selected using NCA. The k-nearest neighbors (kNN) classifier is deployed on the chosen features in the classification phase to obtain predicted values. The recommended method was tested on two ECG signal corpora called ECGID and MIT-BIH. The model achieved 99.12% and 99.94% accuracies on the used ECGID and MIT-BIH datasets, respectively. | en_US |
dc.identifier.citation | Tuncer, T., Aydemir, E., Dogan, S., Kobat, M. A., Kaya, M. C., & Metin, S. (2021). New human identification method using Tietze graph-based feature generation. Soft Computing, 1-13. | en_US |
dc.identifier.doi | 10.1007/s00500-021-06094-5 | |
dc.identifier.endpage | 13 | en_US |
dc.identifier.issn | 1432-7643 | en_US |
dc.identifier.issn | 1433-7479 | en_US |
dc.identifier.scopus | 2-s2.0-85112595858 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00500-021-06094-5 | |
dc.identifier.uri | https://link.springer.com/article/10.1007/s00500-021-06094-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12899/374 | |
dc.identifier.wos | WOS:000682428800004 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Metin, Serkan | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Soft Computing | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | ECG signal classification | en_US |
dc.subject | Tietze graph | en_US |
dc.subject | Tunable Q-factor wavelet transform | en_US |
dc.subject | Machine learning | en_US |
dc.title | New human identification method using Tietze graph-based feature generation | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- Türker Tuncer - Makale Dosyası.pdf
- Boyut:
- 1.39 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Full Text / Tam Metin