New human identification method using Tietze graph-based feature generation

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Electrocardiogram (ECG) signals have been widely used for disease diagnosis. Besides, the ECG signals can be used for human identification. In this work, a Tietze pattern and neighborhood component analysis (NCA)-based human identification method is proposed. Our model uses two feature generation methods to extract both statistical and textural features. The Tietze graph is considered to create a pattern of the presented local graph structure (LGS). Both statistical and textural feature generations are not enough to present a high-accurate model. Therefore, a multileveled structure must be created. Tunable Q-factor wavelet transform (TQWT) is employed as a decomposer. The generated/extracted features in each level are merged, and the merged features are selected using NCA. The k-nearest neighbors (kNN) classifier is deployed on the chosen features in the classification phase to obtain predicted values. The recommended method was tested on two ECG signal corpora called ECGID and MIT-BIH. The model achieved 99.12% and 99.94% accuracies on the used ECGID and MIT-BIH datasets, respectively.

Açıklama

Anahtar Kelimeler

ECG signal classification, Tietze graph, Tunable Q-factor wavelet transform, Machine learning

Kaynak

Soft Computing

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

Sayı

Künye

Tuncer, T., Aydemir, E., Dogan, S., Kobat, M. A., Kaya, M. C., & Metin, S. (2021). New human identification method using Tietze graph-based feature generation. Soft Computing, 1-13.