Comparison of extreme learning machine and deep learning model in the estimation of the fresh properties of hybrid fiber-reinforced SCC

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper studied the estimation of fresh properties of hybrid fiber-reinforced self-compacting concrete (HR-SCC) mixtures with different types and combinations of fibers by using two different prediction method named as the methodologies of extreme learning machine and long short-term memory (LSTM). For this purpose, 48 mixtures, which were designed as single, binary, ternary and quaternary fiber-reinforced SCC with macro-steel fiber, two micro-steel fibers having different aspect ratio, polypropylene (PP) and polyvinylalcohol (PVA), were used. Slump flow, t50 and J-ring tests for designed mixtures were conducted to measure the fresh properties of fiber-reinforced SCC mixtures as per EFNARC. The experimental results were analyzed by Anova method. In the devised prediction model, the amounts of cement, fly ash, silica fume, blast furnace slag, limestone powder, aggregate, water, high-range water-reducer admixture (HRWA) and the fiber ratios were selected as inputs, while the slump flow, t50 and the J-ring were selected as outputs. Based on the Anova analysis’ results, the macro-steel fiber was the most important parameter for the results of slump-flow diameter and t50, while the most important parameter for the results of J-ring was fly ash. Furthermore, it was found that the use of more than 0.20% by volume of 6/0.16 micro-steel fiber positively influenced the fresh properties of SCC mixtures with hybrid fiber. On the other hand, the inclusion of steel fiber instead of synthetic fiber into SCC mixture as micro-fiber was more advantageous in terms of workability of mixtures as result of hydrophobic nature of steel fibers. This study found that extreme learning machine model estimated the slump flow, t50 and J-ring with 99.71%, 81% and 94.21% accuracy, respectively, while deep learning model found the same experimental results with 99.18%, 77.4% and 84.8% accuracy, respectively. It can be emphasized from this study that the extreme learning machine model had a better prediction ability than the deep learning model.

Açıklama

(Early Access)

Anahtar Kelimeler

Hybrid fiber-reinforced SCC, Workability, Anova analysis, Extreme learning machine, Deep learning

Kaynak

Neural Computing and Applications

WoS Q Değeri

Q2

Scopus Q Değeri

Cilt

33

Sayı

18

Künye

Kina, C., Turk, K., Atalay, E., Donmez, I., & Tanyildizi, H. (2021). Comparison of extreme learning machine and deep learning model in the estimation of the fresh properties of hybrid fiber-reinforced SCC. Neural Computing and Applications, 1-19.