Flood flow forecasting using ANN, ANFIS and regression models

Küçük Resim Yok

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer London Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Flood prediction is an important for the design, planning and management of water resources systems. This study presents the use of artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), multiple linear regression (MLR) and multiple nonlinear regression (MNLR) for forecasting maximum daily flow at the outlet of the Khosrow Shirin watershed, located in the Fars Province of Iran. Precipitation data from four meteorological stations were used to develop a multilayer perceptron topology model. Input vectors for simulations included the original precipitation data, an area-weighted average precipitation and antecedent flows with one- and two-day time lags. Performances of the models were evaluated with the RMSE and the R (2). The results showed that the area-weighted precipitation as an input to ANNs and MNLR and the spatially distributed precipitation input to ANFIS and MLR lead to more accurate predictions (e.g., in ANNs up to 2.0 m(3) s(-1) reduction in RMSE). Overall, the MNLR was shown to be superior (R (2) = 0.81 and RMSE = 0.145 m(3) s(-1)) to ANNs, ANFIS and MLR for prediction of maximum daily flow. Furthermore, models including antecedent flow with one- and two-day time lags significantly improve flow prediction. We conclude that nonlinear regression can be applied as a simple method for predicting the maximum daily flow.

Açıklama

Anahtar Kelimeler

MLP; Neuro-fuzzy; Regression analysis; Area-weighted precipitation; Antecedent flow; Iran

Kaynak

Neural Computing & Applications

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

25

Sayı

1

Künye