Approach based on wavelet packet transform and 1D-RMLBP for drowsiness detection using EEG
dc.authorid | 0000-0002-2917-3736 | en_US |
dc.contributor.author | Alçin, Ömer Faruk | |
dc.date.accessioned | 2021-06-08T11:24:28Z | |
dc.date.available | 2021-06-08T11:24:28Z | |
dc.date.issued | 2020 | en_US |
dc.department | MTÖ Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Early drowsiness detection may be crucial for the vehicle alertness system. Towards this, wearable technology, camera-based biophysical signals like electroencephalogram (EEG) approaches are utilised. In this Letter, the EEG-based approach is proposed to detect drowsiness. The proposed method consists of random sampling-based artificial signal augmentation, wavelet packet transform decomposition, logarithmic energy entropy, and one-dimensional region mean local binary pattern (1d-RMLBP) based feature extraction and classifier. k-Nearest neighbour and support vector machine classifiers are employed to detect the drowsiness. The MIT/BIH polysomnographic dataset has been used to test the proposed model. The proposed method has superior performance than the other methods using the same data set. The experimental results demonstrate that the proposed model could efficiently detect drowsiness from polysomnographic EEG signals. | en_US |
dc.identifier.citation | Alçin, O. F. (December 01, 2020). Approach based on wavelet packet transform and 1D‐RMLBP for drowsiness detection using EEG. Electronics Letters, 56, 25, 1378-1381. | en_US |
dc.identifier.doi | 10.1049/el.2020.2668 | |
dc.identifier.endpage | 1381 | en_US |
dc.identifier.issue | 25 | en_US |
dc.identifier.startpage | 1378 | en_US |
dc.identifier.uri | https://doi.org/10.1049/el.2020.2668 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12899/196 | |
dc.identifier.volume | 56 | en_US |
dc.identifier.wos | WOS:000604957700009 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.institutionauthor | Alçin, Ömer Faruk | |
dc.language.iso | en | en_US |
dc.publisher | Wiley-Blackwell | en_US |
dc.relation.ispartof | Electronics Letters | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Wavelet transforms | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Entropy | en_US |
dc.subject | Medical signal processing | en_US |
dc.subject | Signal classification | en_US |
dc.subject | Medical signal detection | en_US |
dc.subject | Nearest neighbour methods | en_US |
dc.subject | Drowsiness detection | en_US |
dc.subject | Vehicle alertness system | en_US |
dc.subject | Wearable technology | en_US |
dc.subject | Camera-based biophysical signals | en_US |
dc.subject | Random sampling-based artificial signal augmentation | en_US |
dc.subject | Logarithmic energy entropy | en_US |
dc.subject | Support vector machine classifiers | en_US |
dc.subject | Polysomnographic EEG signals | en_US |
dc.subject | 1D-RMLBP | en_US |
dc.subject | Wavelet packet transform decomposition | en_US |
dc.subject | One-dimensional region mean local binary pattern based feature extraction | en_US |
dc.subject | MIT-BIH polysomnographic dataset | en_US |
dc.subject | k-nearest neighbour classifier | en_US |
dc.subject | Extreme learning machine | en_US |
dc.subject | WPD | en_US |
dc.title | Approach based on wavelet packet transform and 1D-RMLBP for drowsiness detection using EEG | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Ömer Faruk Alçin-Makale Dosyası.pdf
- Boyut:
- 110.91 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: