Role of the Health System in Combating Covid-19: Cross-Section Analysis and Artificial Neural Network Simulation for 124 Country Cases

dc.authorid0000-0002-6179-5746en_US
dc.contributor.authorBayraktar, Yüksel
dc.contributor.authorÖzyılmaz, Ayfer
dc.contributor.authorToprak, Metin
dc.contributor.authorIşık, Esme
dc.contributor.authorBüyükakın, Figen
dc.contributor.authorOlgun, Mehmet Fırat
dc.date.accessioned2022-03-21T06:47:19Z
dc.date.available2022-03-21T06:47:19Z
dc.date.issued2021en_US
dc.departmentMTÖ Üniversitesi, Darende Meslek Yüksekokulu, Tıbbi Hizmetler ve Teknikler Bölümüen_US
dc.description.abstractIn the fight against Covid-19, developed countries and developing countries diverge in success. This drew attention to the discussion of how different health systems and different levels of health spending are effective in combating Covid-19. In this study, the role of the health system in the fight against Covid-19 is discussed. In this context, the number of hospital beds, the number of doctors, life expectancy at 60, universal health service and the share of health expenditures in GDP were used as health indicators. In the study, firstly 2020 data was estimated by using the Artificial Neural Networks simulation method and this year was used in the analysis. The model, with the data of 124 countries, was estimated using the cross-sectional OLS regression method. The estimation results show that the number of hospital beds, number of doctors and life expectancy at the age of 60 have statistically significant and positive effects on the ratio of Covid-19 recovered/cases. Universal health service and share of health expenditures in GDP are not significant statistically on the cases and recovered. Hospital bed capacity is the most effective variable on the recovered/case ratio.en_US
dc.identifier.citationBayraktar, Y., Özyılmaz, A., Toprak, M., Işık, E., Büyükakın, F., , Olgun, M. F. (2021). Role of the health system in combating Covid-19: Cross-section analysis and artificial neural network simulation for 124 country cases. Social Work in Public Health, 36(2), 178-193.en_US
dc.identifier.doi10.1080/19371918.2020.1856750
dc.identifier.endpage193en_US
dc.identifier.issue2en_US
dc.identifier.startpage178en_US
dc.identifier.urihttp://doi.org/10.1080/19371918.2020.1856750
dc.identifier.urihttps://hdl.handle.net/20.500.12899/726
dc.identifier.volume36en_US
dc.identifier.wosWOS:000603847300001en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakPubMeden_US
dc.institutionauthorIşık, Esme
dc.language.isoenen_US
dc.publishertaylor and francis onlineen_US
dc.relation.ispartofSOCIAL WORK IN PUBLIC HEALTHen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNovel Coronavirusen_US
dc.subjectCovid-19en_US
dc.subjecthealthcare systemen_US
dc.subjectglobal healthen_US
dc.titleRole of the Health System in Combating Covid-19: Cross-Section Analysis and Artificial Neural Network Simulation for 124 Country Casesen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale Dosyası
Boyut:
1.35 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: