WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network

dc.authorid0000-0002-5159-0659en_US
dc.contributor.authorAçıkgöz‬, ‪Hakan
dc.contributor.authorBudak, Ümit
dc.contributor.authorKorkmaz, Deniz
dc.contributor.authorYıldız, Ceyhun
dc.date.accessioned2021-07-19T07:43:01Z
dc.date.available2021-07-19T07:43:01Z
dc.date.issued2021en_US
dc.departmentMTÖ Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractThis paper introduces a novel deep neural network (WSFNet) to efficiently forecast multi-step ahead wind speed. WSFNet forms the basis of the stacked convolutional neural network (CNN) with dense connections of different blocks equipped with the channel attention (CA) module. Dense connections create direct transition paths between the input and all subsequent convolutional blocks. This encourages the reuse of all activations at the network input without loss of gradients in subsequent layers. The CA modules contribute significantly to the performance of the network by suppressing non-useful features extracted by each convolution block. In the proposed method, variational mode decomposition (VMD) was utilized to provide an effective preprocessing and improve the forecasting ability. The case study was conducted on publicly available data from Sotavento Galicia (SG) wind farm. In the evaluations, three variants of the proposed network were analyzed and compared with state-of-the-art deep learning methods. When the results were analyzed, the overall correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE), and symmetric mean absolute percentage error (SMAPE) were obtained as 0.9705, 0.7383, 0.5826, and 0.0466, respectively. The obtained results indicate that the proposed method achieved a competitive performance and can be effectively used for smart-grid operations.en_US
dc.identifier.citationAcikgoz, H., Budak, U., Korkmaz, D., & Yildiz, C. (2021). WSFNet: An Efficient Wind Speed Forecasting Model using Channel Attention-based Densely Connected Convolutional Neural Network. Energy, 121121.en_US
dc.identifier.doi10.1016/j.energy.2021.121121
dc.identifier.endpage16en_US
dc.identifier.issn0360-5442en_US
dc.identifier.issn1873-6785en_US
dc.identifier.scopus2-s2.0-85107931876en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.1016/j.energy.2021.121121
dc.identifier.urihttps://hdl.handle.net/20.500.12899/301
dc.identifier.volume233en_US
dc.identifier.wosWOS:000681276500004en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKorkmaz, Deniz
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofEnergyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectWind speed forecastingen_US
dc.subjectDensely convolutional neural networken_US
dc.subjectChannel attention moduleen_US
dc.subjectVariational mode decompositionen_US
dc.titleWSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural networken_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Hakan Açıkgöz - Makale Dosyası.html
Boyut:
94.42 KB
Biçim:
Hypertext Markup Language
Açıklama:
Full Text / Tam Metin
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: