ÖĞRENCİLERİN AKADEMİK NOT ORTALAMALARININ MAKİNE ÖĞRENMESİ YÖNTEMLERİ İLE TAHMİNİ

Küçük Resim Yok

Tarih

2025

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Bu çalışma, öğrencilerin akademik not ortalamalarını tahmin etmek için farklı makine öğrenmesi yöntemlerini kullanmıştır. Çalışmada, Gradient Boosting Regressor (GBR), Random Forest Regressor, Feedforward Neural Networks (FFNNs), XGBoost ve diğer modeller uygulanmış ve performansları MAE, RMSE, MAPE ve R² gibi metriklerle değerlendirilmiştir. Random Forest modeli, %100 R² ile en yüksek doğruluğu sağlamış ve en düşük hata oranlarına ulaşmıştır. Diğer modeller arasında Gradient Boosting ve XGBoost da yüksek doğruluk oranlarıyla öne çıkmıştır. Araştırma, öğrencilerin günlük çalışma saatleri, sosyal ve fiziksel aktiviteler ile stres seviyeleri gibi değişkenlerin akademik başarı üzerindeki etkilerini analiz etmiştir. Günlük çalışma saatleri, %73'lük pozitif korelasyonla başarı üzerindeki en güçlü etkiye sahip faktör olarak belirlenmiştir. Stres seviyesinin başarıya ölçülü bir şekilde pozitif etkisi olduğu görülürken, fiziksel aktivitelerin başarıyı az da olsa olumsuz etkilediği tespit edilmiştir

Açıklama

Anahtar Kelimeler

Akademik başarı, Tahmin, Regresyon analizi, Makine öğrenmesi

Kaynak

Adıyaman Üniversitesi Sosyal Bilimler Enstitü Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

0

Sayı

50

Künye