Joint underwater target detection and tracking with the Bernoulli filter using an acoustic vector sensor

Küçük Resim Yok

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Academic Press Inc Elsevier Science

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we study the problem of joint underwater target detection and tracking using an acoustic vector sensor (AVS). For this challenging problem, first a realistic frequency domain simulation is set up. The outputs of this simulation generate the two dimensional FRequency-AZimuth (FRAZ) image. On this image, the random finite set (RFS) framework is employed to characterize the target state and sensor measurements. We propose to use the Bernoulli filter, which is the optimal Bayes filter emerged from the RFS framework for randomly on! off switching single dynamic systems. Moreover, to increase the performance of detection and azimuth tracking in low signal-to-noise ratio (SNR) scenarios, a track-before-detect (TBD) measurement model for AVS is proposed to be used with the Bernoulli filter. Sequential Monte Carlo (SMC) implementation is preferred for the Bernoulli filter recursions. Extensive simulation results prove the performance gain obtained by the proposed approach both in estimation accuracy and detection range of the system. (C) 2015 Elsevier Inc. All rights reserved.

Açıklama

Anahtar Kelimeler

Acoustic vector sensor; The Bernoulli filter; Random finite sets; Target tracking; Track before detect

Kaynak

Digital Signal Processing

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

48

Sayı

Künye