An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Photovoltaic (PV) power generation is one of the remarkable energy types to provide clean and sustainable energy. Therefore, rapid fault detection and classification of PV modules can help to increase the reliability of the PV systems and reduce operating costs. In this study, an efficient PV fault detection method is proposed to classify different types of PV module anomalies using thermographic images. The proposed method is designed as a multi-scale convolutional neural network (CNN) with three branches based on the transfer learning strategy. The convolutional branches include multi-scale kernels with levels of visual perception and utilize pre-trained knowledge of the transferred network to improve the representation capability of the network. To overcome the imbalanced class distribution of the raw dataset, the oversampling technique is performed with the offline augmentation method, and the network performance is increased. In the experiments, 11 types of PV module faults such as cracking, diode, hot spot, offline module, and other classes are utilized. The average accuracy is obtained as 97.32% for fault detection and 93.51% for 11 anomaly types. The experimental results indicate that the proposed method gives higher classification accuracy and robustness in PV panel faults and outperforms the other deep learning methods and existing studies

Açıklama

Received 4 January 2022, Revised 29 April 2022, Accepted 9 May 2022, Available online 21 May 2022, Version of Record 21 May 2022.

Anahtar Kelimeler

Solar energy, PV modules, Fault classification, Convolutional neural network, Transfer learning

Kaynak

Engineering Applications of Artificial Intelligence

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

113

Sayı

Künye

Korkmaz, D., & Acikgoz, H. (2022). An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network. Engineering Applications of Artificial Intelligence, 113, 104959.