Yazar "Metin, Serkan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe New human identification method using Tietze graph-based feature generation(Springer, 2021) Tuncer, Türker; Aydemir, Emrah; Doğan, Şengül; Kobat, Mehmet Ali; Kaya, Muhammed Çağrı; Metin, SerkanElectrocardiogram (ECG) signals have been widely used for disease diagnosis. Besides, the ECG signals can be used for human identification. In this work, a Tietze pattern and neighborhood component analysis (NCA)-based human identification method is proposed. Our model uses two feature generation methods to extract both statistical and textural features. The Tietze graph is considered to create a pattern of the presented local graph structure (LGS). Both statistical and textural feature generations are not enough to present a high-accurate model. Therefore, a multileveled structure must be created. Tunable Q-factor wavelet transform (TQWT) is employed as a decomposer. The generated/extracted features in each level are merged, and the merged features are selected using NCA. The k-nearest neighbors (kNN) classifier is deployed on the chosen features in the classification phase to obtain predicted values. The recommended method was tested on two ECG signal corpora called ECGID and MIT-BIH. The model achieved 99.12% and 99.94% accuracies on the used ECGID and MIT-BIH datasets, respectively.Öğe OECD Endüstriyel Üretim Verilerinde Bulunan Kayıp Verilerin kNN Yöntemi İle Tahmini(Journal of Social Sciences of Mus Alparslan University, 2021) Metin, SerkanEkonomik İşbirliği ve Kalkınma Örgütü (OECD), daha iyi yaşamlar oluşturmak için çalışan uluslararası bir organizasyondur. Bu amaç doğrultusunda OECD ülkeler hakkında birçok göstergede veri toplamaktadır. Daha doğru analizler yapabilmek için bu verilerin eksiksiz olması gerekmektedir. Fakat ulusal ve uluslararası farklı kaynaklardan toplanan bilgilerde eksiklikler olmaktadır. Bu eksiklikler özellikle istatiksel analiz ve makine öğrenmesi yöntemleri kullanarak çalışmak isteyen araştırmacılara problem çıkartmaktadır. Bu tür analizler için veri setlerinin öncelikle eksik verilerden temizlenmesi gerekmektedir. Genel olarak eksik veriler istatistiksel analizleri üzerinde olumsuz bir etkiye sahiptir. Bu sorunu çözmek için geleneksel ve modern yöntemler vardır. Değişkenler tamamen rastgele eksik (MCAR), rastgele eksik (MAR) ve rastgele eksik değil (MNAR) olabilir. Bu neden ile her değişken ayrı ayrı ele alınmalıdır. Temel Ekonomik Göstergeler veri tabanı içerisindeki endüstriyel üretim başlıklı veriler setinde 34 ülkeye ait 113 eksik veri ve 3933 tam veri olmak üzere 4046 değer bulunmaktadır. Veri setini farklı gruplara ayırmak için çalışmada k-en yakın komşu (kNN) adı verilen makine öğrenimi algoritmasını kullanılmış. kNN algoritması kullanımının basit olduğundan yaygın olarak kullanılmaktadır. Çalışmada kullanılan algoritmaya ait en yakın komşuluk değeri k=15 olarak belirlenmiştir. Eksik verileri tahmin etmede %86,8’lik bir başarı elde edilmiştir.