OECD Endüstriyel Üretim Verilerinde Bulunan Kayıp Verilerin kNN Yöntemi İle Tahmini
Yükleniyor...
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Journal of Social Sciences of Mus Alparslan University
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Ekonomik İşbirliği ve Kalkınma Örgütü (OECD), daha iyi yaşamlar oluşturmak için çalışan uluslararası bir organizasyondur. Bu amaç doğrultusunda OECD ülkeler hakkında birçok göstergede veri toplamaktadır. Daha doğru analizler yapabilmek için bu verilerin eksiksiz olması gerekmektedir. Fakat ulusal ve uluslararası farklı kaynaklardan toplanan bilgilerde eksiklikler olmaktadır. Bu eksiklikler özellikle istatiksel analiz ve makine öğrenmesi yöntemleri kullanarak çalışmak isteyen araştırmacılara problem çıkartmaktadır. Bu tür analizler için veri setlerinin öncelikle eksik verilerden temizlenmesi gerekmektedir. Genel olarak eksik veriler istatistiksel analizleri üzerinde olumsuz bir etkiye sahiptir. Bu sorunu çözmek için geleneksel ve modern yöntemler vardır. Değişkenler tamamen rastgele eksik (MCAR), rastgele eksik (MAR) ve rastgele eksik değil (MNAR) olabilir. Bu neden ile her değişken ayrı ayrı ele alınmalıdır. Temel Ekonomik Göstergeler veri tabanı içerisindeki endüstriyel üretim başlıklı veriler setinde 34 ülkeye ait 113 eksik veri ve 3933 tam veri olmak üzere 4046 değer bulunmaktadır. Veri setini farklı gruplara ayırmak için çalışmada k-en yakın komşu (kNN) adı verilen makine öğrenimi algoritmasını kullanılmış. kNN algoritması kullanımının basit olduğundan yaygın olarak kullanılmaktadır. Çalışmada kullanılan algoritmaya ait en yakın komşuluk değeri k=15 olarak belirlenmiştir. Eksik verileri tahmin etmede %86,8’lik bir başarı elde edilmiştir.
Açıklama
Anahtar Kelimeler
OECD, Eksik Veri, kNN Algoritması, OECD, Missing Data, kNN Algorithm
Kaynak
Journal of Social Sciences of Mus Alparslan University
WoS Q Değeri
Scopus Q Değeri
Cilt
9
Sayı
4
Künye
Metin, S. (2021). OECD Endüstriyel Üretim Verilerinde Bulunan Kayıp Verilerin kNN Yöntemi İle Tahmini. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 9(4), 955-967.