Performance Comparison of Biology based Metaheuristics Optimization Algorithms using Unimodal and Multimodal Benchmark Functions
Küçük Resim Yok
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Optimization is used in almost every aspect of our lives today and makes our lives easier. Optimization is generally studied as classical and heuristic optimization techniques. Classical optimization methods are not effective in real-world engineering problems. These methods, by their nature, require a mathematical model. Metaheuristic optimization methods have started to be used frequently today in the solution of these problems when a mathematical model cannot be created or a solution cannot be produced in an effective time even if it is created. These methods, by their nature, cannot produce effective results in all engineering problems. Therefore, new metaheuristic optimization methods are constantly being researched. In this study, quality test functions have been used to compare the performances of five algorithms that have been developed in recent years and produce effective results. The results obtained from these functions are shared in this study. It has been observed that the Artificial Hummingbird Optimization Algorithm (AHA) gives better results than other metaheuristic algorithms.
Açıklama
Anahtar Kelimeler
Optimization, artificial intelligence, metaheuristic optimization, AHA
Kaynak
Turkish Journal of Science & Technology
WoS Q Değeri
Scopus Q Değeri
Cilt
18
Sayı
1












