A novel deep learning-based feature selection model for improving the static analysis of vulnerability detection
dc.authorid | 0000-0002-2131-6368 | en_US |
dc.contributor.author | Batur Şahin, Canan | |
dc.contributor.author | Abualigah, Laith | |
dc.date.accessioned | 2021-05-26T08:30:32Z | |
dc.date.available | 2021-05-26T08:30:32Z | |
dc.date.issued | 2021 | en_US |
dc.department | MTÖ Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümü | en_US |
dc.description.abstract | The automatic detection of software vulnerabilities is considered a complex and common research problem. It is possible to detect several security vulnerabilities using static analysis (SA) tools, but comparatively high false-positive rates are observed in this case. Existing solutions to this problem depend on human experts to identify functionality, and as a result, several vulnerabilities are often overlooked. This paper introduces a novel approach for effectively and reliably finding vulnerabilities in open-source software programs. In this paper, we are motivated to examine the potential of the clonal selection theory. A novel deep learning-based vulnerability detection model is proposed to define features using the clustering theory of the clonal selection algorithm. To our knowledge, this is the first time we have used deep-learned long-lived team-hacker features to process memories of sequential features and mapping from the entire history of previous inputs to target vectors in theory. With an immune-based feature selection model, the proposed approach aimed to improve static analyses' detection abilities. A real-world SA dataset is used based on three open-source PHP applications. Comparisons are conducted based on using a classification model for all features to measure the proposed feature selection methods' classification improvement. The results demonstrated that the proposed method got significant enhancements, which occurred in the classification accuracy also in the true positive rate. | en_US |
dc.identifier.citation | Şahin, C. B., & Abualigah, L. (2021). A novel deep learning-based feature selection model for improving the static analysis of vulnerability detection. Neural Computing and Applications, 1-19. | en_US |
dc.identifier.doi | 10.1007/s00521-021-06047-x | |
dc.identifier.endpage | 19 | en_US |
dc.identifier.scopus | 2-s2.0-85105376457 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00521-021-06047-x | |
dc.identifier.uri | https://hdl.handle.net/20.500.12899/147 | |
dc.identifier.wos | WOS:000645963700001 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Batur Şahin, Canan | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Neural Computing and Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Feature selection | en_US |
dc.subject | Immune systems | en_US |
dc.subject | Software vulnerability prediction | en_US |
dc.title | A novel deep learning-based feature selection model for improving the static analysis of vulnerability detection | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- Canan Batur Şahin-Makale Dosyası.pdf
- Boyut:
- 2.06 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: