An improved residual-based convolutional neural network for very short-term wind power forecasting

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

ELSEVIER

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

An accurate forecast of wind power is very important in terms of economic dispatch and the operation of power systems. However, effectively mitigating the risks arising from wind power in power system operations greatly reduces the risk of wind energy producers, exposing them to potential additional costs. Being aware of this challenge, we introduced a two-step novel deep learning method for wind power forecasting. The first stage includes processes of Variational Mode Decomposition (VMD)-based feature extraction and converting these features into images. In the second stage, an improved residual-based deep Convolutional Neural Network (CNN) was utilized to forecast wind power. Meteorological wind speed, wind direction, and wind power data, which are directly related to each other, were employed as a dataset. The combined dataset was procured from a wind farm in Turkey between January 1 and December 31, 2018. The results of the proposed method were compared with the results obtained from the state-of-the-art deep learning architectures namely SqueezeNet, GoogLeNet, ResNet-18, AlexNet, and VGG-16 as well as physical model based on available meteorological forecast data. The proposed method outperformed the other architectures and demonstrated promising results for very short-term wind power forecasting due to its competitive performance.

Açıklama

Anahtar Kelimeler

Wind power forecasting, Residual network, Convolutional neural network, Variational mode decomposition, Deep learning

Kaynak

Energy Conversion and Management

WoS Q Değeri

Q1

Scopus Q Değeri

Cilt

228

Sayı

113731

Künye

Yildiz, C., Acikgoz, H., Korkmaz, D., & Budak, U. (2021). An improved residual-based convolutional neural network for very short-term wind power forecasting. Energy Conversion and Management, 228, 113731.