Transfer Öğrenme Yaklaşımı Kullanılarak İzolatör Kusurlarının Tespiti

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Elektrik enerjisinin iletimi ve dağıtımı, modern toplumların işleyişinde hayati bir rol oynamaktadır. Bu enerjinin güvenli ve kesintisiz bir şekilde taşınması, elektrik sistemlerinin sağlıklı bir şekilde çalışmasıyla mümkün olmaktadır. Ancak, elektrik iletim hatlarındaki kusurlar, sistemde arızalara ve enerji kesintilerine neden olabilmektedir. İzolatör kusurları, elektrik hatlarındaki en yaygın arızalar arasında yer almaktadır. Bu kusurlar, genellikle izolatör yüzeyindeki çatlaklar, kırıklar, erozyon veya kimyasal bozulmalar şeklinde ortaya çıkmaktadır. Son yıllarda, yapay zeka ve makine öğrenmesi teknikleri, izolatör kusurlarının belirlenmesi için alternatif bir çözüm sunmuştur. Bu alanda transfer öğrenme, özellikle dikkat çeken bir yaklaşım olarak ön plana çıkmaktadır. Bu yaklaşım, izolatör kusurlarının tespitinde kullanılan verilerden öğrenilen bilgilerin, yeni bir izolatördeki kusurların belirlenmesinde kullanılmasına olanak sağlamaktadır. Bu çalışmada izolatör görüntülerinden transfer öğrenme yaklaşımı kullanılarak izolatör türü ve sağlamlık durumu (normal/kusurlu) tespiti yapılmıştır. Bu problemlerin verimli çözümü için Çoklu Öğrenme yaklaşımı dikkate alınmıştır. Bu durumlar literatürde yaygın olarak kullanılan çok sınıflı görüntü veri setlerinde iyi başarımlar gösteren AlexNet, ResNet50 ve GoogLeNet gibi mimarilere giriş olarak uygulanmıştır. İzolatörün sağlamlık durumunun tespitinde en iyi doğruluk oranına % 97.674 ile AlexNet ve ResNe50 mimarilerinde ulaşılmıştır. İzolatör türünün belirlenmesinde en iyi doğruluk oranına % 90.698 ile ResNe50 mimarisinde ulaşılmıştır.

Açıklama

Anahtar Kelimeler

Transfer Öğrenme, ESA, İzolatör kusuru, Çoklu Öğrenme

Kaynak

Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

15

Sayı

2

Künye