Birbirine Benzeyen Üç Farklı Hastalığın Tespitinde Derin Öğrenme Modellerinin Performansı
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Tokat Gaziosmanpaşa Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bir hastalığın doğru teşhis edilmesi ve doğru tedavi yöntemlerinin kullanması hastalıklı bireye kısa sürede şifayı sağlamada önemli iki kriterdir. Kısacası sorun bilinirse çözümü de kolaylaşacaktır. Çalışmamız da bu yine bu eksende olup gelişen tıp teknolojisini destekleyici mahiyettedir. Şöyle ki bir birine benzeyen üç hastalık tipi olan viral, bakteriyel ve COVID-19 pnömosine sahip hasta radyolojik görüntülerinin konvansiyonel sinir ağ(CNN) mimarileriyle hastalıkların tespit performanslarını karşılaştırdık. Bu karşılaştırmanın başarı oranın artması, doğru hastalık tanısı konulmasını da arttırmış olacaktır. Bu şekilde başarılı yöntemlerin ortaya çıkması hem teşhisi koyan hekimin işini kolaylaştırmasının yanı sıra tüm insanlık için en değerli kavram olan vakitten de tasarruf edilmiş olacak. 1281 COVID-19, 3270 Normal, 1656 viral-pnömoni ve 3001 bakteriyel-pnömonili toplamda 9208 göğüs röntgen görüntüsünün kullanıldığı çalışmamızda en başarılı performansı %88,05 ile Resnet50 mimarisi elde etmiştir.
Açıklama
Anahtar Kelimeler
Computer Software, Bilgisayar Yazılımı
Kaynak
Journal of New Results in Engineering and Natural Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
17












