Benzetimli Tavlama Algoritması İle Eksik Veri Tamamlama
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Statiksel birçok yöntem eksik değerlere sahip veri setleri üzerinde çalışma kapasitesine sahip değildir. Bu nedenle, girdi olarak yalnızca tam veriyi kabul eden modellerin tahmin performansı önemli ölçüde düşmektedir. Eksik verilerin tamamlanması bunun için veri analizlerinde önemli bir yere sahiptir. Bu çalışmada kullanılan veri seti üzerinde eksik olan verilerin tamamlanma probleminin çözümünde sezgisel optimizasyon yöntemi olan Benzetimli Tavlama Algoritması(BTA) kullanılmıştır. Modern sezgisel teknikler, bir problem çözümünde, kendi yerel arama sistemleri ile en iyi sonuca ulaşmayı amaçlamaktadırlar. BTA performansını etkileyen en önemli değer başlangıç sıcaklık değeri (T0) olduğundan üç farklı sıcaklık değeri ile sonuçlar alınmıştır. To=100.000 değeri için %68, To=10.000 için %51 ve To=1.000 için %46’lik bir başarı elde edilmiştir.
Açıklama
Anahtar Kelimeler
Bilgisayar Bilimleri, Yazılım Mühendisliği, Matematik, İstatistik ve Olasılık, Sezgisel yöntemler, genetik algoritma, Eksik veri, benzetimli tavlama algoritması
Kaynak
Fırat Üniversitesi Mühendislik Bilimleri Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
33
Sayı
1












