Electrocardiogram beat classification using deep convolutional neural network techniques

dc.authorid0000-0002-2917-3736en_US
dc.contributor.authorCömert, Zafer
dc.contributor.authorAkbulut, Yaman
dc.contributor.authorAkpınar, Muhammed H.
dc.contributor.authorAlçin, Ömer Faruk
dc.contributor.authorBudak, Ümit
dc.contributor.authorAslan, Muzaffer
dc.contributor.authorŞengür, Abdulkadir
dc.date.accessioned2021-09-08T07:27:52Z
dc.date.available2021-09-08T07:27:52Z
dc.date.issued2020en_US
dc.departmentMTÖ Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractThe electrocardiogram (ECG) is a useful method which enables the monitoring of various cardiac conditions, such as arrhythmia and heart rate variability (HRV). ECG beats help to determine various heart failures such as cardiac disease and ventricular tachyarrhythmia. In the literature, it can be seen that various advanced signal processing and machine learning techniques and deep learning algorithms have been employed for ECG beat categorization. These methods were generally based on either the time domain or frequency domain. Time-frequency (T-F) based techniques have also been proposed for ECG beat classification. In this chapter, a different model is proposed for the ECG beat classification task. In the proposed approach, the ECG beats are initially represented by images. Instead of using a time-frequency approach for converting the ECG beats to ECG images, we opt to use the ECG beats directly to construct the ECG images. In other words, the ECG beat values are directly saved as ECG images. Three deep convolutional neural network (CNN) approaches are considered in ECG beat classification. These approaches ensure end-to-end learning schema, fine-tuning of pre-trained CNN models, extraction of deep features and their classification using a traditional classifier, such as the support vector machine (SVM) or deep machine learning approaches. The well-known MIT-BIH arrhythmia database is considered in the evaluation of the proposed deep learning approaches. The database is separated into two sets, the training and test dataset in proportions of 75% and 25%, respectively. The experimental results are evaluated using the classification accuracy score. The results show that the proposed methods have potential for use in ECG beat classification.en_US
dc.identifier.citationCömert, Z., Akbulut, Y., Akpinar, M. H., Alçin, Ö. F., Budak, Ü., Aslan, M., & Şengür, A. (2020). Electrocardiogram beat classification using deep convolutional neural network techniques. Modelling and Analysis of Active Biopotential Signals in Healthcare, 1, 12-1 - 12-25.en_US
dc.identifier.doi10.1088/978-0-7503-3279-8ch12
dc.identifier.endpage12-25en_US
dc.identifier.issn978-075033279-8en_US
dc.identifier.scopus2-s2.0-85096256069en_US
dc.identifier.startpage12-1en_US
dc.identifier.urihttps://doi.org/10.1088/978-0-7503-3279-8ch12
dc.identifier.uri978-075033277-4
dc.identifier.urihttps://hdl.handle.net/20.500.12899/399
dc.indekslendigikaynakScopusen_US
dc.institutionauthorAlçin, Ömer Faruk
dc.language.isoenen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.ispartofModelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleElectrocardiogram beat classification using deep convolutional neural network techniquesen_US
dc.typeBook Chapteren_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Zafer Cömert - Makale Dosyası.pdf
Boyut:
3.13 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Full Text / Tam Metin
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: