Derin Evrişimsel Sinir Ağ Mimarisi ve Zaman Frekans Gösterimini Kullanılarak Büyük Güçlü Motor Arızalarının Tespiti
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Asenkron motorlar endüstride iş gücünün sağlanması açısından birçok uygulamada kullanılmaktadır. Asenkron motorlarda oluşan arızalar mil yatağı, stator ve rotor bileşenleri ile ilgilidir. Bu bileşenlerden mil yatağı arızaları en çok karşılaşılan problemlerden biridir. Bu arızaların teşhisi için genellikle titreşim sinyalleri kullanılmaktadır. Endüstriyel ortamda çalışan motor ile aynı özelliklerde bir motor bulmak zor olduğundan karşılaştırma yapılarak arızaların tespiti yapılamamaktadır. Bu çalışmada titreşim sinyallerinin zaman frekans görüntüleri oluşabilecek mil yatağı arızaları için toplanarak transfer öğrenme tabanlı bir model ile eğitilmiştir. Daha sonra endüstriyel mil arızası olan bir motordan aynı şartlarda ve benzer bir konumda alınan sinyaller kullanılarak endüstrideki büyük güçlü motordaki arıza belirlenmiştir. Yapılan testler sonucunda endüstrideki motorda oluşan kusurların %95’in üzerinde doğru bir şekilde tespit edildiği ispatlanmıştır.
Açıklama
Anahtar Kelimeler
Mikroskopi, Mühendislik, Makine, Görüntüleme Bilimi ve Fotoğraf Teknolojisi, Derin öğrenme, Asenkron motor, mil yatağı arızaları, arıza teşhisi
Kaynak
EMO Bilimsel Dergi
WoS Q Değeri
Scopus Q Değeri
Cilt
14
Sayı
1












