Compact operators on the Motzkin sequence space c0(M)

dc.contributor.authorERDEM, Sezer
dc.date.accessioned2025-10-24T18:04:09Z
dc.date.available2025-10-24T18:04:09Z
dc.date.issued2024
dc.departmentMalatya Turgut Özal Üniversitesi
dc.description.abstractThe concept of non-compactness measure is extremely beneficial for func- tional analysis in theories, such as fixed point and operator equations. Apart from these, the Hausdorff measure of non-compactness also has some applications in the theory of sequence spaces which is an interesting topic of functional analysis. One of these applications is to ob- tain necessary and sufficient conditions for the matrix operators between Banach coordinate (BK) spaces to be compact. In line with these explanations, in this study, the necessary and sufficient conditions for a matrix operator to be compact from the Motzkin sequence space c0(M) to the sequence space ? ? {??, c, c0, ?1} are presented by using Hausdorff measure of non-compactness.
dc.identifier.doi10.54187/jnrs.1517251
dc.identifier.endpage118
dc.identifier.issn1304-7981
dc.identifier.issue2
dc.identifier.startpage109
dc.identifier.trdizinid1260190
dc.identifier.urihttps://doi.org/10.54187/jnrs.1517251
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1260190
dc.identifier.urihttps://hdl.handle.net/20.500.12899/2679
dc.identifier.volume13
dc.indekslendigikaynakTR-Dizin
dc.language.isoen
dc.relation.ispartofJournal of New Results in Science
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzTR-Dizin_20251023
dc.subjectSequence spaces
dc.subjectCompact operators
dc.subjectMotzkin numbers
dc.subjectHausdorff measure of non-compactness
dc.titleCompact operators on the Motzkin sequence space c0(M)
dc.typeArticle

Dosyalar