Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Aslan, Serpil" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A New Hybrid Method for Classification of Rice Leaf Diseases: SVM+NCA+Resnet50
    (Niyazi BULUT, 2024) Bingöl, Harun; Aslan, Serpil
    Rice is extremely important for individuals and countries, both in terms of nutritional value and financial value. It is necessary to protect such an important plant from diseases and increase the yield. However, early detection of diseases on plant leaves can prevent the spread of this disease and is also very important in terms of treating the plant. Artificial intelligence has become very popular in recent years thanks to its success in terms of disease classification. CNN architectures used in image classification perform very successful work. Within the scope of this study, it is recommended that the diseases on rice leaves be classified using artificial intelligence techniques, without mixing them with each other, with very high accuracy values, and without any problems caused by humans. With this proposed model, a support vector machine-based model is proposed that classifies five (5) of the most common rice diseases with a very high accuracy of %98.
  • Küçük Resim Yok
    Öğe
    Birbirine Benzeyen Üç Farklı Hastalığın Tespitinde Derin Öğrenme Modellerinin Performansı
    (Tokat Gaziosmanpaşa Üniversitesi, 2022) Karaca, Yunus Emre; Aslan, Serpil
    Bir hastalığın doğru teşhis edilmesi ve doğru tedavi yöntemlerinin kullanması hastalıklı bireye kısa sürede şifayı sağlamada önemli iki kriterdir. Kısacası sorun bilinirse çözümü de kolaylaşacaktır. Çalışmamız da bu yine bu eksende olup gelişen tıp teknolojisini destekleyici mahiyettedir. Şöyle ki bir birine benzeyen üç hastalık tipi olan viral, bakteriyel ve COVID-19 pnömosine sahip hasta radyolojik görüntülerinin konvansiyonel sinir ağ(CNN) mimarileriyle hastalıkların tespit performanslarını karşılaştırdık. Bu karşılaştırmanın başarı oranın artması, doğru hastalık tanısı konulmasını da arttırmış olacaktır. Bu şekilde başarılı yöntemlerin ortaya çıkması hem teşhisi koyan hekimin işini kolaylaştırmasının yanı sıra tüm insanlık için en değerli kavram olan vakitten de tasarruf edilmiş olacak. 1281 COVID-19, 3270 Normal, 1656 viral-pnömoni ve 3001 bakteriyel-pnömonili toplamda 9208 göğüs röntgen görüntüsünün kullanıldığı çalışmamızda en başarılı performansı %88,05 ile Resnet50 mimarisi elde etmiştir.
  • Küçük Resim Yok
    Öğe
    Detection of hateful twitter users with graph convolutional network model
    (Springer Heidelberg, 2023) Utku, Anil; Can, Umit; Aslan, Serpil
    Today, hate speech is widespread and persistent in various forms on social networking platforms, targeting different minority groups. These attacks can be carried out using various factors such as racial, religious, gender, and physical disability, etc. Considering the number of people and their interactions, social networks are the most important channels through which these discourses spread. The social network structure is considered a set of nodes and edges and is very suitable for the graph structure. The multidimensional structure of social networks carries social network data from Euclidean space to non-Euclidean space. In non-Euclidean space, the graph structure is used to represent data effectively. In this respect, solving the hate speech problem with graph-based methods in a complex dimensional space can produce more impressive results. In this study, a powerful method based on the Graph Convolutional Network (GCN) model, which is rarely used in this field, was proposed for the detection of hateful Twitter users in social networks. Well-known machine learning methods were used to measure the performance of this method. According to the results obtained, the proposed GCN model gave the most successful result.
  • Küçük Resim Yok
    Öğe
    EPILEPTIC SEIZURE DETECTION FROM EEG SIGNALS WITH RECURRENT NEURAL NETWORKS BASED CLASSIFICATION MODEL
    (Niyazi BULUT, 2024) Aslan, Serpil; Bingöl, Harun
    Epileptic seizures are a neurological disorder that occurs as a result of sudden and uncontrolled electrical activities of the non-contagious brain. This condition may cause the person to lose normal activities temporarily. Epileptic seizures are a severe disease that affects approximately 60 million people in the world, usually manifested by symptoms such as loss of consciousness, muscle twitching, sudden sensory changes, or behavioural changes [1]. Genetics, brain injury, hormonal fluctuations, infections, or metabolic problems are some of the possible causes of epileptic seizures. Although the severity and duration of the seizure varies from person to person, it is usually very short and rarely reaches a point where it endangers human life. However, such seizures need to be recognized as soon as possible in order to improve the quality of life of individuals and reduce the frequency of seizures. Epileptic seizures are a manageable disease with early diagnosis and appropriate treatment. Recognizing epileptic seizures begins with understanding a person's symptoms and triggering factors. These symptoms may include loss of consciousness, muscle twitches, sudden sensory changes, and behavioural changes. The symptoms of seizures, past medical history, and neurological examinations are essential in the diagnosis process. From past to present, many methods have been developed for the early diagnosis and detection of epileptic seizures [2]. One of these is analyzing the brain's neural activities using electroencephalography (EEG), which helps experts make a diagnosis. Although EEG signals are used as a powerful tool in epileptic seizure recognition, distinguishing the signals within them is both costly and requires highly expert experience. Therefore, this study proposed an automatic classification model for pre-processed EEG signals using Dual-Tree Complex Wavelet Transform (DT-CWT) based on deep learning-based Recurrent Neural Networks (RNN) architecture to assist experts. Compared to classical machine learning methods, deep learning-based models require less manual feature engineering because they perform data automatically thanks to deep networks instead of manually selecting and transforming the data features. These advantages make the model more general and flexible. The proposed model aims to classify EEG signals and detect epileptic seizures effectively and quickly in the early stages.
  • Küçük Resim Yok
    Öğe
    EVSEL ATIKLARIN DERİN ÖĞRENME TEKNİKLERİ İLE AYRIŞTIRILMASI
    (Ali KARCI, 2022) Karaca, Yunus Emre; Aslan, Serpil; Hark, Cengiz
    Derin öğrenme teknolojisinin hızlı gelişimi sayesinde günlük yaşantımızın hemen hemen her noktasında kullanılan akıllı sistemler geliştirilmektedir. Geliştirilen uygulamalar hayatımızı kolaylaştırdığı gibi doğaya da olumlu katkılar sağlamıştır. Geleneksel atık ayrıştırma yöntemleri, verimlilik ve doğruluk açısından yetersiz kalmaktadır. Ayrıca yüksek maliyetli olmasının yanında çevresel riskler bakımdan da sıkıntılar doğurabilir. Son yıllarda, yapay zekâ, makine öğrenmesi ve beraberinde getirdiği derin öğrenme teknikleri organik, evsel ve ambalaj atıkların ayrıştırılması gibi karmaşık problemlerin çözümünde popüler bir yöntem olmuştur. Bu çalışmada, hem insan ve canlı yaşamı hem de doğanın korunması açısından büyük öneme sahip olan evsel atıkların ayrıştırılması problemi ele alınmıştır. Yapay zekâ kümesinde yer alan makine öğrenmesinin bir alt kolu olan derin öğrenme ile evsel atıkların tespit edilip ayrıştırılması için popüler konvansiyonel sinir ağı (CNN) tabanlı ResNet-50, DenseNet-121, Inception-V3, VGG16 mimarileri kullanılarak sınıflandırma performansları karşılaştırılmıştır.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Sentiment Analysis of Covid-19 Tweets by using LSTM Learning Model
    (Ali KARCI, 2021) Karaca, Yunus Emre; Aslan, Serpil
    Social media plays an important role in our lives due to the conditions of the age we live. Nowadays, the most popular social media platform that prioritizes meaningful content sharing is Twitter. In Twitter, which produces big data on an unprecedented scale, users have the opportunity to share their own perspectives, feelings, and experiences, as well as examine the opinions of other individuals. The Coronavirus-2019 (Covid-19) disease, transmitted through close contact and small droplets spread by people coughing, sneezing, or speaking, has created social and economic wounds worldwide. As of July 7, 2021, more than 185 million people worldwide have been diagnosed with the New Coronavirus (Covid-19), and approximately 4 million people have died from this infectious disease. This work focuses on the analysis of the sentiments that Covid-19 leaves on people, using the tweets that people share about the Covid-19 pandemic on the Twitter platform. Analyzes are based on deep learning algorithms. Sentiment analysis can provide serious benefits. In this study, we used a Long-short Term Memory (LSTM) based network model. Also, we compared the proposed model other machine learning algorithms: Support Vector Machine (SVM), Naïve Bayes and Logistic Regression. Experimental results show that our proposed method can effectively perform sentiment analysis on the Twitter dataset.

| Malatya Turgut Özal Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Malatya Turgut Özal Üniversitesi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim