EMG Sinyalleri Kullanılarak GoogLeNet ve Çok Seviyeli DPD ile El Tutma Hareketlerinin Sınıflandırılması

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Fırat University

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Elektromiyografi (EMG) elektriksel aktiviteyi ölçmek için kullanılan bir yöntemdir. Bu yöntem günümüzde hastalık tespitinde kullanılmasıyla yaygınlaşmış olsa da robotik, protez kontrolü, video oyunları gibi popüler alanlarda yer edinmiştir. Bu çalışmada altı temel el hareketinin EMG sinyalleri kullanılarak sınıflandırılması amaçlanmıştır. Bu amaç doğrultusunda transfer öğrenme yaklaşımı kullanılmıştır. EMG sinyalleri çok seviyeli dalgacık paket dönüşümü (DPD) ile zaman-frekans (ZF) görüntülerine çevrilmiştir. Bütün kanallara ait ZF görüntülerinin %80’i birleştirilerek GoogLeNet mimarisini eğitmek için kullanılmıştır. Hareket tanımada başarımı artırmak için GoogLeNet’ten elde edilen öznitelikler Destek Vektör Makinesi (DVM) ile sınıflandırılmıştır. Önerilen yöntem altı temel el hareketini tanımada %98.833 doğruluk oranına sahiptir. Önerilen yöntem aynı veri setini kullanan yöntemler ile karşılaştırılmıştır. Yapılan karşılaştırmalar sonucunda önerilen yöntemin mevcut yöntemlerden %0.8 daha yüksek performans sergilediği görülmüştür. Deneysel çalışmalar önerilen yaklaşımın EMG ile hareket tanımada kullanılabilecek etkin ve verimli bir yöntem olduğunu göstermiştir

Açıklama

Anahtar Kelimeler

EMG, transfer öğrenme, GoogLeNet, DVM, çok seviyeli DPD

Kaynak

Fırat Üniversitesi Mühendislik Bilimleri Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

34

Sayı

1

Künye

ÖZKÜÇÜK, M., ALÇİN, Ö. F., & GENÇOĞLU, M. EMG Sinyalleri Kullanılarak GoogLeNet ve Çok Seviyeli DPD ile El Tutma Hareketlerinin Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 33-43.