Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Demirci, M. Fatih" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Distinctive interest point selection for efficient near-duplicate image retrieval
    (Institute of Electrical and Electronics Engineers Inc., 2016) Yildiz, Burak; Demirci, M. Fatih
    Distinctive subset of the interest points creation for near-duplicate image retrieval is significant in two terms. The former is that the query time decreases reasonably. The latter is that using the distinctive subsets performs better than the ordinary subsets. In this paper, we focus on the creation of such subsets for effective near-duplicate retrieval and propose a novel interest point selection method. In this method, the distinctive subset is created with a ranking according to a density map calculated from the interest points. We examined a number of experiments to show the performance of the proposed method and we got a convincing result of 95.46% recall while the precision is still 96.04%. © 2016 Elsevier B.V., All rights reserved.
  • Küçük Resim Yok
    Öğe
    Distinctive Interest Point Selection for Efficient Near-duplicate Image Retrieval
    (Ieee, 2016) Yildiz, Burak; Demirci, M. Fatih
    Distinctive subset of the interest points creation for near-duplicate image retrieval is significant in two terms. The former is that the query time decreases reasonably. The latter is that using the distinctive subsets performs better than the ordinary subsets. In this paper, we focus on the creation of such subsets for effective near-duplicate retrieval and propose a novel interest point selection method. In this method, the distinctive subset is created with a ranking according to a density map calculated from the interest points. We examined a number of experiments to show the performance of the proposed method and we got a convincing result of 95.46% recall while the precision is still 96.04%.

| Malatya Turgut Özal Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Malatya Turgut Özal Üniversitesi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim