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ABSTRACT
Radiation dosimeters are used to measure the absorbed radiation
dose of any living organism during the time intervals. They include
defective crystals that store radiation until they are stimulated. Ther-
moluminescence (TL) is a way to see the absorbed dose of the
dosimeters. The irradiated crystal is heated up to 500°C to reveal the
absorbed dose as a luminescence light. The TL dosimetric proper-
ties of natural halite (rock-salt) crystals extracted from Meke crater
lake in Konya, Turkey, were investigated in this study. Support Vec-
tor Machine (SVM), Artificial Neural Network (ANN) and K-Nearest
Neighbor (K-NN) were also examined utilizing machine learning for
categorization of TL characteristics. According to the experimental
output, the TL glow curve has two main peaks located at 100 and
270°C with good dosimetric properties. In the three classifiers, SVM
has the biggest accuracy and precision. High training-low testing
and results from normalized data give the best accuracy, precision,
sensitivity and F-score.
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1. Introduction

The thermoluminescence (TL) phenomenon was widely used for dosimetric purposes and
was first studied by Daniel et al [1]. TL is a defect-related phenomenon largely due to the
presence of impurities and defects that can significantly affect the TL response and sus-
ceptibility materials, and various models have been proposed to explain the observation
of glow curves (GLs) [2,3]. For obtaining information on the trapping states and defect dis-
tribution of insulators, the method is useful, convenient and effective. The energy levels in
crystalline materials, on the other hand, are caused by structural defects or the presence
of intrinsic and/or extrinsic atoms [4,5]. Depending on the processing conditions, electrons
and holes formed as a result of irradiation of thematerial can be trapped at defect sites, and
subsequent heating allows some of the stored energy to be released as photons [6,7].

Sodium chloride, or salt, is an ionic compound with the chemical formula NaCl, which
represents the combination of sodium and chloride ions [8]. The basic structure is known
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as the halite or rock-salt crystal structure, and it can be present in a variety of other com-
pounds. It can be interpreted as two interpenetrating face-centred cubic (fcc) lattices or as
a face-centred cubic (fcc) lattice with a two-atom basis. It has wide bandgap energy that is
about 8.5 eV [9]. NaCl is naturally crystallized from lakes, seawater mines as solid rock and
also as saline groundwater. While impurities can affect the color spectrum of halite, defects
within the crystal lattice are caused by the deep blue and violet colors, and bacteria from
various algae cause the pink and peach colors of many dry lake halite specimens [10].

In general, the luminescenceproperties of natural halite havebeen investigatedby some
researchers [11–14] who observed two main peaks of halite and considered its use as a
retrospective dosimeter [12,15–17]. The literature shows that natural halite is suitable and
preferred for dosimetry studies [11,18,19]. In recent years, researchers used computational
modeling tools to simulate and predict using data from their TL-OSL experimental work
[20–25]. Artificial neural network [26–29] is the commonly used model for this purpose but
deep learning [30] and machine learning [31] are also used. These proposed models have
been presented to us with promising results.

In crystalline solids, there is a perfect order in the three-dimensional arrangement of the
atoms, ions or molecules. Although a perfect crystal does not include any kind of defects,
impurities or dislocations, there is no perfect crystal in the world. They include at least one
of them. These defects and impurities in the solid crystals behave as a trap to store the
ambient radiation until a kind of stimulation energy is applied. In thermoluminescence, the
stimulation is done by heating the material to see the luminescence light.

In this study, the TL properties of natural Halite which are obtained from Meke crater
lake, the town of Konya Karapinar, were investigated for the classification features by using
machine learning. The proposed model consists of three classifiers which are as follows:
Support Vector Machine (SVM), Artificial Neural Network (ANN) and K-Nearest Neighbor (K-
NN), andwere used for the classification process. Thus, it will be determinedwhichmethod
is more effective for classifying TL properties. A detailed description of the classifiers and
methods are given in Section 2. Their detailed results are given in Section 3.

2. Materials andmethods

In this part of the study, the halite samples collected from the dry lake layer were divided
into four main groups to obtain TL characteristics such as dose–response, fading, repro-
ducibility andheating rates. For all parts of the experiment, samples of 20mgwereweighed
and irradiated with a β-source at room temperature, and the irradiated samples were read
by the Harshaw TLD System 3500 Manual TLD Reader at 1°C/s. The dose rate of the point
beta source (90Sr–90Y) is 0.040Gy/s and its activity was about 3.7 GBq (100mCi). The β-
source was installed in a 9010 optical dating system which is interfaced to a PC using a
serial RS-232 port to control irradiation time. It is calibrated by the manufacturer on 10
March 1994. A standard clear glass filter was always installed in the TLD reader between
the planchet and photomultiplier tube to eliminate unwanted infrared light that is emitted
from the heater. For the dose–response experiment, samples were irradiated from 2.4 Gy
to 108Gy and the irradiated samples were read at 1°C/s by the TLD reader. In the repro-
ducibility part of the experiment, all samples were irradiated with 36Gy and read out at
1°C/s and this step was repeated five times. For the fading studies, all samples were irradi-
ated with 36 Gy and stored in the darkroom for various periods of time before being read
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Figure 1. Support vector machine.

out at 1°C/s. Halite samples were likewise irradiated with 36Gy and then read out for dif-
ferent heating rates using the TLD reader in the heating rate experiment. The proposed
methodology for the classification of the glow curve data of halite obtained as a result of all
these experiments and its main components is discussed in detail. The proposed method
consists of three main stages. In the first step, a dataset was created by labeling the items
manually with dose–response, heating rate, reproducibility and fading class labels accord-
ing to the temperature and TL intensity values obtained as a result of the experiment. In the
second step, the data were pre-processed and normalized. In the last step, Support Vector
Machine (SVM), K-Nearest Neighbor (K-NN) and Artificial Neural Network (ANN) machine
learning algorithms were trained using temperature and TL intensity features.

2.1. Support vectormachine

Support Vector Machine (SVM) is one of the most robust machine learning techniques that
can be decomposed by linear and non-linear lines derived from Vapnik’s statistical learn-
ing theory [32]. This technique can be used for both classification and regression analysis
and is a supervised learning method for classifying small data [33]. In SVM, the input data
are first transferred to a high-dimensional space where two groups can be separated by
a hyperplane that maximizes the margin between them [34]. It is ideal that the wider the
space between the two classes in SVM, the classification will be more successful. SVM that
separates the two classes in the optimal hyperplane is given in Figure 1.

The optimal hyperplane f (x) = 0 between datasets is composed by SVM by solving a
constrained quadratic optimization problem based on inherent risk minimization [35].

xi, i = 1,, . . . ,n input vector yi−1, 1 belongs to one of two classes, the hyperplane is
defined as:

w0.x + b0 = 0 (1)

Here w, x and b indicate the weight vector, input vector and bias, respectively. For a given
w and b, the data can be linearly divided in the following cases:

w.xi + b ≥ 1 if yi = 1 (2)
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Figure 2. K-NN diagram.

w.xi + b ≤ 1 if yi = −1 (3)

The kernel method is used to solve a non-linear problem with a linear classifier. The input
data are transformed into a higher dimensional feature space with the function�. K kernel
function:

k(x, x′) = ((x), (x′ (4)

• Polynomial

k(xi, xj) = (xi.xj + 1)d (5)

• Radial Basis Function

(x, y) = e−γ ||(x−xi||2 (6)

2.2. K-nearest neighbor

K-NN algorithms hypothesize to categorize a data subset that is defined as similarity mea-
sure to query its K-nearest neighbors from a large-scale data set. It is used as a basic
component in a wide range of applications such as dimension reduction, pattern recogni-
tion and image acquisition [36,37]. K-NN is a learning algorithm based on the principle that
samples in a dataset will often be found near other samples with similar characteristics [38].
With this algorithm, there are k training points nearest to this point data to classify a new
point data. The classification occurs by themajority vote of the neighbors. A component to
be classified is distributed to the nearest class among the nearest neighbors measured by
a distance function [39]. The formulation of the K-NN algorithm is shown in Equation (7).

x(x, y) =
√∑

j= 1

wj(xj − zj)2 (7)

In Equation (7); wj is the weight associated with the j dimension. The weight is selected
for each dimension and the square distance function is specified. K-NN diagram is given in
Figure 2.
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Figure 3. Artificial neural network.

2.3. Artificial neural network

ANN is inspired by the intelligent data processing capability of the human brain. ANN is
motivatedby imitating the interactionof neurons in thebrainwith eachother [40]. TheANN
model, which is a mathematical model consisting of neurons and associated neuron con-
nections, is shown in Figure 3. The connections formed between neurons used in network
formation are associated with numerical values called weights. Each weight has a certain
value that is transferred in thenetwork andmultipliedby thedata samples [41,42]. ANNs can
be trained to recognize non-linear relationships between input and output data without
having knowledge about the problem. After training, the runtime of ANN is extremely fast
because it contains only a few simple, interconnected processing units. ANNs have features
such as model recognition, generalization and interpolation. Therefore, when an unknown
input is applied to the trained network, it can produce a suitable output. They require only
simulated training data rather than deterministic error and systemmodels [43].

3. Experimental applications

3.1. Experimental results

In this study, the TLdosimetric properties of the natural halite (rock-salt) crystalswere inves-
tigatedby usingmachine learning for the classification features. The halitematerial exhibits
good TL dosimetric properties, such as a simple TL glow curve with two distinct peaks, as
seen in Figure 4. Although the first peak is unsuitable for dosimetric applications due to its
easy fading at low temperatures, the second peak is in the appropriate temperature range.
The appropriate temperature rangemeans no loss is observed in the radiation dose stored
in the defect responsible for this peak and all stored radiation dose in this defect is easily
measured by applying suitable thermal energy.
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Figure 4. The glow curve variations of Halite samples with respect to the dose response, heating rate,
reproducibility and fading.

SVM, ANN and K-NN were used for the classification process of the glow curve data
of halite samples. Before the classifiers were trained, the data were normalized by pre-
processing. SVMs are trained using Polynomial and Radial Basis Function kernels. For K-NN,
the number of K was chosen as 3. The data were divided into two different ways to deter-
mine the effect of the data size allocated for training and testing on the classifier. First, 70%
of the data were used for training, 30% for testing; second, 80% of the data were used for
training and 20% for testing. Different machine learning algorithms were trained in the
study to analyze the dataset including TL glow curve data. After that, the results of the
experimentswere analyzed using the classificationmetrics. Tomeasure the performance of
machine learning algorithms, there are common classificationmetrics available. The quality
of themodel was evaluated using classificationmetrics. The performance of themodel was
measured using classification metrics such as accuracy, precision, sensitivity and F-score.
The evaluation criteria in classification problems are performed by using a matrix, called
the confusion matrix, with the correct and incorrectly classified sample numbers for each
class. The descriptions of FP, FN, TP and TN can be defined as follows:

• False positives (FP): samples of negative class, predicted positively.
• False negatives (FN): negatively predicted samples with a positive true class.
• True positives (TP): correctly predicted examples of the positive class.
• True negatives (TN): examples that are correctly predicted as belonging to the negative

class.
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Table 1. Classification results from non-normalized data.

Model
Dividing data at different rates

for training and testing Accuracy % Precision % Sensitivity % F-score %

SVM (Polinom) 30%–70% 95.22 94.24 95.64 94.65
SVM (Polinom) 20%–80% 96.10 95.62 95.87 95.04
SVM (RBF) 30%–70% 94.23 94.70 94.51 95.41
SVM (RBF) 20%–80% 95.14 95.71 95.05 95.64
K-NN 30%–70% 92.45 94.00 95.86 94.10
K-NN 20%–80% 93.36 94.88 94.85 95.99
ANN 30%–70% 95.24 94.83 94.37 94.40
ANN 20%–80% 95.45 95.35 94.94 95.07

Accuracy = |TN| + |TP|
|FN| + |FP| + |TN| + |TP| (8)

Precision measurement evaluates the efficiency of the classifier for each class in binary
problems. Sensitivity, known as the true positive rate, is the ratio of predicted data from the
positive class to the true positive data. The formulation of precision is given in Equation 9.

Precision = |TP|
|FN| + |TP| (9)

Sensitivity is a measure of the probability that a positive prediction is correct. Sensitivity
measurement is given in Equation 10.

Sensitivity = |TP|
|TP| + |FN| ( (10))

The F-score is a harmoniousmean of positive predictive ratio and sensitivity measures. The
reasonwhy it is a harmonicmean instead of a simplemean is that we should not ignore the
extreme cases. Positive predictive ratio and sensitivity measures alone are not sufficient to
draw a meaningful comparison result. Since evaluating both criteria together gives more
accurate results, F-score is defined. The F-score is calculated as in Equation 11.

F - score = 2∗|TP|
2∗|TP| + |FP| + |FN| (11)

In the first experiment, the classifiers were trained without normalizing the data, and in
the second experiment, the classifiers were trained by normalizing the data. The classifi-
cation results obtained from the data that cannot be normalized are given in Table 1. The
highest accuracy is acquired as 96.10% when SVM is used with the polynomial kernel, and
the highest accuracy value is obtained as 95.14%when the SVM is usedwith the RBF kernel.
In addition, the highest accuracy was obtained 93.36%with K-NN and the highest accuracy
is acquired as 95.45% with ANN. In terms of accuracy, the best classification performance
was obtained with the SVM classifier. The confusion matrix for the best classification result
obtained with non-normalized data is given in Figure 5.

The classification results obtained after the data are normalized and are given in Table
2. The highest accuracy value is acquired at 99.20% when SVM is used with the polyno-
mial kernel, and the highest accuracy is obtained as 98.11% when it is used with the RBF
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Figure 5. Confusion matrix for the best classification result with unnormalized data.

Figure 6. Confusion matrix for the best classification result with normalized data.

kernel. In addition, the highest accuracy was 97.23% with K-NN and the highest accuracy
was 95.14%with ANN. The best classification performancewith respect to the accuracywas
again obtainedwith the SVMclassifier. The confusionmatrix for the best classification result
obtained with normalized data is given in Figure 6.
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Table 2. Classification results obtained from normalized data.

Model
Dividing data at different rates

for training and testing Accuracy % Precision % Sensitivity % F-score %

SVM (Polinom) 30%–70% 97.56 97.96 98.49 97.35
SVM (Polinom) 20%–80% 99.20 99.08 98.88 98.88
SVM (RBF) 30%–70% 97.24 97.12 97.52 98.45
SVM (RBF) 20%–80% 98.11 98.29 98.34 98.54
K-NN 30%–70% 96.46 97.33 97.51 97.87
K-NN 20%–80% 97.23 98.03 97.74 99.12
ANN 30%–70% 98.23 97.62 97.00 97.04
ANN 20%–80% 99.14 98.30 98.93 99.01

All experiments must be done manually in a laboratory setting to interpret TL charac-
teristics by looking at the TL glow curve. At the same time, experimental studies in the
laboratory environment are dangerous and take a long time. In addition, thematerials used
in the experiments are quite expensive. To accelerate and facilitate the analysis of TL dosi-
metric features, machine learning software, which is a sub-branch of artificial intelligence,
was used in this study. The proposed classification models of TL glow curves derived from
fourdistinct experimentswere shown tohavehighaccuracy rates in this study. These results
showed that the thermoluminescence glow curves of dosimetric materials can be used for
the classification method. Therefore, we can obtain information about dose–response and
fading times of TL glow curves. In this way, it will be possible to have information about
the fading time of the TL glow curves, heating rates and dose rates without experimental
knowledge. According to the glow curve data, the researchers simulated and predicted the
TL intensity [22,44], fading time [20,23,45], the date or source of exposure [46] and dose rate
[23] by using machine learning. And, one can obtain the kinetic parameters such as acti-
vation energy and frequency factor to determine the defect center of TL materials using
some other methods according to the glow curve data [47,48]. In this study, TL characteris-
tics such as dose–response, fading time, reproducibility and heating rate are classified, and
in this way, the TL glow curve data determine which TL characteristic they belong to, and
thus the amount of exposed dose and the fading time will be determined.

4. Conclusion and future work

The TLdosimetric properties of natural halite (rock-salt) crystals recovered fromMeke crater
lake in Konya, Turkey, were investigated in this work. Machine learning was used to study
the classification of their features. The halite material has good TL dosimetric properties,
such as a simple TL glow curve with two distinguishable peaks, when the results are exam-
ined according to their dosimetric features.Machine learningwith three classifierswas used
to analyze the TL outcomes for classification characteristics. SVM, ANN and K-NNwere cho-
sen for the classification process. Results were tabulated and compared as normalized and
non-normalized data. When divided, data are chosen as 80% training and 20% testing, and
the better accuracy, precision, sensitivity and F-score are obtained. Results fromnormalized
data give better accuracy, precision, sensitivity and F-score than unnormalized data. In the
chosen classifiers, the SVM has the biggest accuracy and precision than others, and both
results obtained from normalized and non-normalized data.
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In short, the halite crystal extracted fromMeke crater lake in Konya city of Turkey shows
good dosimetric properties, and SVM which is used as a classifier for machine learning has
the biggest accuracy and precision. High training-low testing gives the best accuracy, pre-
cision, sensitivity and F-score. In future work, we can try to learn about the defect centers
involved in the TL glow curves by regression method.
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