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Abstract
In this study, we study rotational hypersurfaces in 4-dimensional Lorentz-Minkowski space.
We find the rotational hypersurfaces about spacelike axis according to Gaussian and mean
curvatures in E4

1 and give some results with the aid of the Gaussian and mean curvatures.
After that, we deal with the Gauss map of rotational hypersurface about spacelike axis by
obtaining the Gaussian and mean curvatures. We obtain the second and third Laplace-
Beltrami operators on rotational hypersurface about spacelike axis in E4

1 . Also, we give
these characterizations for rotational hypersurfaces about timelike and lightlike axes, too.
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1. Introduction
It is known that a rotational hypersurface is defined as a hypersurface rotating a curve

around an axis. In this context, if α : I ⊂ R −→ π is a curve in a plane π in 4-
dimensional Lorentz-Minkowski space E4

1 and l is a straight line in E4
1 , then a rotational

hypersurface is defined by a hypersurface rotating the profile curve α around the axis l.
Furthermore, if the profile curve α rotates around the axis l and it simultaneously displaces
parallel lines orthogonal to the axis l, then the obtained hypersurface is called helicoidal
hypersurface with the axis l. With the aid of these definitions, the differential geometry of
rotational (hyper)surfaces, helicoidal (hyper)surfaces or other types of (hyper)surfaces in 3
or higher-dimensional Euclidean, Minkowskian, Galilean, and pseudo-Galilean spaces have
been studied by scientists. For instance, finite type surfaces of revolution in a Euclidean
3-space have been classified in [6] and some properties about surfaces of revolution in
four dimensions have been given in [17]. In [5], the authors have studied the translation
surfaces in the 3-dimensional Euclidean and Lorentz-Minkowski spaces under the condition
∆IIIri = µiri, µi ∈ R, where ∆III denotes the Laplacian of the surface with respect to
the nondegenerate third fundamental form III and in [8], the authors have classified
the translation surfaces in three dimensional Galilean space G3 satisfying ∆IIxi = λixi,
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λi ∈ R, where ∆II denotes the Laplacian of the surface with respect to the nondegenerate
second fundamental form II (throughout this study, we call the operators ∆II and ∆III as
second Laplace-Beltrami operator and third Laplace-Beltrami operator, respectively). The
general rotational surfaces in Minkowski 4-space and the third Laplace-Beltrami operator
and the Gauss map of the rotational hypersurface in Euclidean 4-space have been studied
in [10] and [14], respectively. Also, Dini-type helicoidal hypersurface in E4 and Dini-
type helicoidal hypersurfaces with timelike axis in E4

1 have been studied in [12] and [13],
respectively. In [7], the authors have been classified complete hypersurfaces in E4 with
constant mean curvature and constant scalar curvature. In [2], Arslan and his friends
have considered generalized rotational surfaces imbedded in a Euclidean space of four
dimensions and also they have given some special examples of these surfaces in E4 and in
[3], the authors have studied translation surfaces in Euclidean 4-space. Hypersurfaces in
Euclidean 4-space with harmonic mean curvature vector field have been studied in [15]. In
[19], Yoon has studied rotational surfaces with finite type Gauss map in Euclidean 4-space.
Minimal translation hypersurfaces in E4 have been studied by Moruz and Munteanu [18].
Also, in [1], the authors have studied the Monge hypersurfaces in Euclidean 4-space with
density. Furthermore, Izumiya et al. have introduced the notion of flatness for lightlike
hypersurfaces and studied their singularities [16]. In [4], the authors have studied Lorentz
hypersurfaces in E4

1 satisfying ∆H⃗ = αH⃗, where H⃗ is the mean curvature vector field of
a hypersurface, ∆ is Laplace operator and α is a constant and they have shown that the
Lorentz hypersurface satisfying this condition has constant mean curvature. The explicit
parameterizations of rotational hypersurfaces in Lorentz-Minkowski space En

1 have been
given and rotational hypersurfaces in En

1 with constant mean curvature have been obtained
in [9]. In [11], the author has found the equations for Gaussian and mean curvatures of the
helicoidal hypersurfaces in E4

1 . Also, he has obtained a theorem classifying the helicoidal
hypersurface with timelike axis satisfying ∆H = AH, where A is a 4 × 4 matrix.

In the present paper, we study the rotational hypersurfaces in 4-dimensional Lorentz-
Minkowski space. In this context, firstly we give the Gaussian and mean curvatures of
rotational hypersurfaces (which are special types of helicoidal hypersurfaces studied in
[11]) about spacelike, timelike and lightlike axes in E4

1 . Also, we find the rotational
hypersurfaces about spacelike and timelike axes according to the Gaussian and mean
curvatures in E4

1 and give some results with the aid of these curvatures. After that, we
deal with the Gauss map of rotational hypersurfaces about spacelike, timelike and lightlike
axes by obtaining the Gaussian and mean curvatures. Also, we study the second and third
Laplace-Beltrami (LBII and LBIII) operators on rotational hypersurface about spacelike,
timelike and lightlike axes in E4

1 .
Now, let us recall some fundamental notions for hypersurfaces in Lorentz-Minkowski

4-space.
If −→x = (x1, x2, x3, x4), −→y = (y1, y2, y3, y4) and −→z = (z1, z2, z3, z4) are three vectors in

E4
1 , then the inner product and vector product are defined by

⟨−→x , −→y ⟩ = −x1y1 + x2y2 + x3y3 + x4y4 (1.1)

and

−→x × −→y × −→z = det


−e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

 , (1.2)

respectively. Also, the norm of the vector −→x is ∥−→x ∥ =
√

|⟨−→x , −→x ⟩|.
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If

Γ : U ⊂ E3 −→ E4
1 (1.3)

(u1, u2, u3) −→ Γ(u1, u2, u3) = (Γ1(u1, u2, u3), Γ2(u1, u2, u3), Γ3(u1, u2, u3), Γ4(u1, u2, u3))

is a hypersurface in E4
1 , then the Gauss map (i.e., the unit normal vector field), the matrix

forms of the first and second fundamental forms are

NΓ = Γu1 × Γu2 × Γu3

∥Γu1 × Γu2 × Γu3∥
, (1.4)

[gij ] =

 g11 g12 g13
g21 g22 g23
g31 g32 g33

 (1.5)

and

[hij ] =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 , (1.6)

respectively. Here gij =
⟨
Γui , Γuj

⟩
, hij =

⟨
Γuiuj , NΓ

⟩
, Γui = ∂Γ

∂ui
, Γuiuj = ∂2Γ

∂uiuj
, i, j ∈

{1, 2, 3}.
Also, the matrix of shape operator of the hypersurface (1.3) is

S = [aij ] = [gij ].[hij ], (1.7)

where [gij ] is the inverse matrix of [gij ].
With the aid of (1.5)-(1.7), the Gaussian curvature and mean curvature of a hypersurface

in E4
1 are given by

K = ε
det[hij ]
det[gij ]

(1.8)

and
3εH = tr(S), (1.9)

respectively. Here, ε = ⟨NΓ, NΓ⟩ . For more details about hypersurfaces in E4
1 , we refer to

[11,13] and etc. Also, the inverse of an arbitrary matrix

[Aij ] =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 (1.10)

in E4
1 is

[Aij ] = 1
det[Aij ]

 A22A33 − A23A32 A13A32 − A12A33 A12A23 − A13A22
A23A31 − A21A33 A11A33 − A13A31 A13A21 − A11A23
A21A32 − A22A31 A12A31 − A11A32 A11A22 − A12A21

 , (1.11)

where

det[Aij ] = −A13A22A31 +A12A23A31 +A13A21A32 −A11A23A32 −A12A21A33 +A11A22A33.
(1.12)

In the present study, we deal with timelike rotational hypersurfaces. One can obtain
corresponding results with same methods for spacelike rotational hypersurfaces, too.
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2. Rotational hypersurfaces about spacelike axis in E4
1

In this section, we find the rotational hypersurface about spacelike axis according to
the Gaussian and mean curvatures in E4

1 and give some examples for different Gaussian
and mean curvatures. We study the Gauss map of this hypersurface and obtain the
curvatures of it. Also, we study the LBII and LBIII operators on the rotational hypersurface
with spacelike axis in E4

1 and give some characterizations for LBII-minimality and LBIII-
minimality of this hypersurface.

2.1. Curvatures of rotational hypersurfaces about spacelike axis in E4
1

For a differentiable function f(x) : I ⊂ R −→ R, the rotational hypersurface which is
obtained by rotating the profile curve α(x) = (x, 0, 0, f(x)) about spacelike axis (0, 0, 0, 1)
is given by

Γ(x, y, z) =


cosh y cosh z sinh y cosh z sinh z 0

sinh y cosh y 0 0
cosh y sinh z sinh y sinh z cosh z 0

0 0 0 1

 .


x
0
0

f(x)


= (x cosh y cosh z, x sinh y, x cosh y sinh z, f(x)) , (2.1)

where x ∈ R − {0}.
With the aid of the first differentials of (2.1) with respect to x, y and z, the Gauss map

of the rotational hypersurface (2.1) is obtained from (1.4) by

NΓ = − 1√
1 − f ′2

(
f ′ cosh y cosh z, f ′ sinh y, f ′ cosh y sinh z, 1

)
(2.2)

and from (2.2), we get
⟨NΓ, NΓ⟩ = 1. (2.3)

Here, we state f = f(x) and f ′ = df(x)
dx .

Also, from (1.5), we obtain the matrix of the first fundamental form, its inverse and
determinant as

[gij ] =

 f ′2 − 1 0 0
0 x2 0
0 0 x2 cosh2 y

 , (2.4)

[gij ] =


1

f ′2 − 1 0 0
0 1

x2 0
0 0 1

x2 cosh2 y

 (2.5)

and
det[gij ] = x4

(
f ′2 − 1

)
cosh2 y, (2.6)

respectively. From (1.6), the matrix form of the second fundamental form of the hyper-
surface (2.1), its inverse and determinant as

[hij ] = 1√
1 − f ′2

 −f ′′ 0 0
0 xf ′ 0
0 0 xf ′ cosh2 y

 , (2.7)

[hij ] =
√

1 − f ′2

 − 1
f ′′ 0 0
0 1

xf ′ 0
0 0 1

xf ′ cosh2 y

 (2.8)

and
det[hij ] = −x2f ′2f ′′ cosh2 y

(1 − f ′2)3/2 , (2.9)
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respectively and here, we state f ′′ = d2f(x)
dx2 . Hence, using (2.3), (2.6) and (2.9) in (1.8), we

can give the following theorem:

Theorem 2.1. The Gaussian curvature of the rotational hypersurface (2.1) is

K = f ′2f ′′

x2 (1 − f ′2)
5
2

. (2.10)

Here, we want to find the function f according to the Gaussian curvature K by solving
the equation (2.10). For solving the differential equation (2.10), let us put

A = f ′3

x6 (1 − f ′2)3/2 . (2.11)

By differentiating (2.11) and using (2.10), we have

A′ = 3K(x) − 6x3A

x4 . (2.12)

The solution of (2.12) which is a first order differential equation with respect to A is
obtained by

A = 3
∫ x

1 K(t)t2 dt + c1
x6 , (2.13)

c1 ∈ R. From (2.11) and (2.13), we obtain that

(
1 − f ′2

)3/2
(

3
∫ x

1
K(t)t2 dt + c1

)
= f ′3 (2.14)

and so,

f(x) = ±
∫ (

3
∫ x

1 K(t)t2 dt + c1
) 1

3√
1 + (3

∫ x
1 K(t)t2 dt + c1)

2
3

dx. (2.15)

Hence, we can state the following theorem:

Theorem 2.2. The rotational hypersurface (2.1) about spacelike axis in E4
1 can be parametrized

with respect to the Gaussian curvature by

Γ(x, y, z) =

x cosh y cosh z, x sinh y, x cosh y sinh z, ±
∫ (

3
∫ x

1 K(t)t2 dt + c1
) 1

3√
1 + (3

∫ x
1 K(t)t2 dt + c1)

2
3

dx

 ,

(2.16)
where c1 ∈ R.

Example 2.3. If we take K(x) = 1
x2 and c1 = 3 in (2.16), then the rotational hypersurface

is

Γ(x, y, z) =

x cosh y cosh z, x sinh y, x cosh y sinh z,
( 3√9x2 − 2)

√
1 + 3√9x2

3

 . (2.17)

In the following figures, one can see the projections of the rotational hypersurface (2.17) for
z = 2 into x2x3x4, x1x3x4, x1x2x4 and x1x2x3-spaces in (a), (b), (c) and (d), respectively.
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Figure 1

Also from Theorem 2.2, we can give the following results:

Corollary 2.4. The rotational hypersurface (2.1) about spacelike axis in E4
1 with constant

Gaussian curvature (K = k ∈ R) can be parametrized by

Γ(x, y, z) =

x cosh y cosh z, x sinh y, x cosh y sinh z, ±
∫ 3

√
c1 + k(x3 − 1)√

1 + 3
√

(c1 + k(x3 − 1))2
dx

 .

Corollary 2.5. The rotational hypersurface (2.1) about spacelike axis in E4
1 with zero

Gaussian curvature can be parametrized by

Γ(x, y, z) =

x cosh y cosh z, x sinh y, x cosh y sinh z, ±
3
√

c1x√
1 + 3

√
(c1)2

 .

Also, using (2.5) and (2.7) in (1.7), the shape operator of the rotational hypersurface
(2.1) is obtained by

S = 1√
1 − f ′2


f ′′

1−f ′2 0 0
0 f ′

x 0
0 0 f ′

x

 . (2.18)

So, from (1.9), (2.3) and (2.18), we get

Theorem 2.6. The mean curvature of the rotational hypersurface (2.1) is

H = 2f ′(1 − f ′2) + xf ′′

3x (1 − f ′2)3/2 . (2.19)

Here, we want to find the function f according to the mean curvature H by solving the
equation (2.19). For solving the differential equation (2.19), let us take

B = f ′(x)
x
√

1 − f ′2(x)
. (2.20)
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By differentiating (2.20) and using (2.19), we have

B′ = 3H(x) − 3B

x
. (2.21)

The solution of (2.21) which is a first order differential equation with respect to B is
obtained by

B = 3
∫ x

1 H(t)t2 dt + c2
x3 , (2.22)

c2 ∈ R. From (2.20) and (2.22), we obtain that

f(x) = ±
∫ 3

∫ x
1 H(t)t2 dt + c2√

x4 + (3
∫ x

1 H(t)t2 dt + c2)2
dx. (2.23)

Thus, we can give the following theorem:

Theorem 2.7. The rotational hypersurface (2.1) about spacelike axis in E4
1 can be parametrized

with respect to the mean curvature by

Γ(x, y, z) =

x cosh y cosh z, x sinh y, x cosh y sinh z, ±
∫ 3

∫ x
1 H(t)t2 dt + c2√

x4 + (3
∫ x

1 H(t)t2 dt + c2)2
dx

 ,

(2.24)
where c2 ∈ R.

Example 2.8. If we take H(x) = −2
3x and c2 = −1 in (2.24), then the rotational hyper-

surface is
Γ(x, y, z) =

(
x cosh y cosh z, x sinh y, x cosh y sinh z,

−x√
2

)
. (2.25)

In Figure 2, one can see the projections of the rotational hypersurface (2.25) for z = 2
into x2x3x4, x1x3x4, x1x2x4 and x1x2x3-spaces in (a), (b), (c) and (d), respectively.

Figure 2
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2.2. Gauss map of the rotational hypersurface about spacelike axis in E4
1

From (2.2), let us parametrize the Gauss map of the rotational hypersurface (2.1) about
spacelike axis in E4

1 as

ΓG(x, y, z) = − 1√
1 − f ′2

(
f ′ cosh y cosh z, f ′ sinh y, f ′ cosh y sinh z, 1

)
. (2.26)

Then, from (1.4) the normal of (2.26) is

NG = 1√
1 − f ′2

(
f ′ cosh y cosh z, f ′ sinh y, f ′ cosh y sinh z, 1

)
(2.27)

and from (2.27), we have
⟨NG, NG⟩ = 1. (2.28)

From (1.5), we obtain the matrix of the first fundamental form, its inverse and deter-
minant as

[gij ]G = 1
1 − f ′2


−f ′′2

(1−f ′2) 0 0
0 f ′2 0
0 0 f ′2 cosh2 y

 , (2.29)

[gij ]G = (−1 + f ′2)

 − (−1+f ′2)
f ′′2 0 0
0 − 1

f ′2 0
0 0 − 1

f ′2 cosh2 y

 (2.30)

and
det([gij ]G) = −f ′4f ′′2 cosh2 y

(f ′2 − 1)4 , (2.31)

respectively. From (1.6), the matrix form of the second fundamental form of (2.26), its
inverse and determinant as

[hij ]G = − 1
f ′2 − 1


f ′′2

(f ′2−1) 0 0
0 f ′2 0
0 0 f ′2 cosh2 y

 , (2.32)

[hij ]G = (f ′2 − 1)

 − (f ′2−1)
f ′′2 0 0
0 − 1

f ′2 0
0 0 − 1

f ′2 cosh2 y

 (2.33)

and
det([hij ]G) = −f ′4f ′′2 cosh2 y

(f ′2 − 1)4 , (2.34)

respectively. Hence, using (2.28), (2.31) and (2.34) in (1.8), we have

Theorem 2.9. The Gaussian curvature of (2.26) is
KG = 1. (2.35)

Also, using (2.30) and (2.32) in (1.7), the shape operator of (2.26) is obtained by

SG =

 1 0 0
0 1 0
0 0 1

 . (2.36)

So, from (1.9), (2.28) and (2.36), we get

Theorem 2.10. The mean curvature of (2.26) is
HG = 1. (2.37)
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2.3. The second Laplace-Beltrami operator on rotational hypersurface
about spacelike axis in E4

1

The second Laplace-Beltrami (LBII) operator of a smooth function φ = φ(x1, x2, x3)|D,
(D ⊂ R3) of class C3 with respect to the nondegenerate second fundamental form of
hypersurface Γ is the operator which is defined as follows:

∆IIφ = − 1√
|det[hij ]|

3∑
i,j=1

∂

∂xi

(√
|det[hij ]|hij ∂φ

∂xj

)
, (2.38)

where hij are the components of the matrix [hij ]−1. So, using (1.11), (1.12) and (2.38),
the LBII operator of a smooth function φ = φ(x, y, z) can be written as

∆IIφ = − 1√
|det[hij ]|



∂
∂x

(
(h22h33−h23h32)φx+(h13h32−h12h33)φy+(h12h23−h13h22)φz√

|det[hij ]|

)
+ ∂

∂y

(
(h23h31−h21h33)φx+(h11h33−h13h31)φy+(h13h21−h11h23)φz√

|det[hij ]|

)
+ ∂

∂z

(
(h21h32−h22h31)φx+(h12h31−h11h32)φy+(h11h22−h12h21)φz√

|det[hij ]|

)


,

(2.39)
where

det[hij ] = −h13h22h31+h12h23h31+h13h21h32−h11h23h32−h12h21h33+h11h22h33. (2.40)

Now, if we denote the LBII operator of the rotational hypersurface (2.1) in E4
1 as ∆IIΓ,

then from (2.1) and (2.39), we get

∆IIΓ = ((∆IIΓ)1, (∆IIΓ)2, (∆IIΓ)3, (∆IIΓ)4)

= − 1√
|det[hij ]|

(
(U1)x + (V1)y + (W1)z, (U2)x + (V2)y + (W2)z,
(U3)x + (V3)y + (W3)z, (U4)x + (V4)y + (W4)z

)
, (2.41)

where
Ui = 1√

|det[hij ]|
((h22h33 − h23h32)(Γi)x + (h13h32 − h12h33)(Γi)y + (h12h23 − h13h22)(Γi)z) ,

Vi = 1√
|det[hij ]|

((h23h31 − h21h33)(Γi)x + (h11h33 − h13h31)(Γi)y + (h13h21 − h11h23)(Γi)z) ,

Wi = 1√
|det[hij ]|

((h21h32 − h22h31)(Γi)x + (h12h31 − h11h32)(Γi)y + (h11h22 − h12h21)(Γi)z) .


(2.42)

Here, taking i = 1, 2, 3, 4 and using (2.1), (2.7)-(2.9), we have

U1 = xf ′ cosh2 y cosh z√
−f ′′

√
1−f ′2

, U2 = xf ′ sinh y cosh y√
−f ′′

√
1−f ′2

,

U3 = xf ′ cosh2 y sinh z√
−f ′′

√
1−f ′2

, U4 = xf ′2 cosh y√
−f ′′

√
1−f ′2

;

 (2.43)

V1 = −xf ′′ sinh y cosh y cosh z√
−f ′′

√
1−f ′2

, V2 = − xf ′′ cosh2 y√
−f ′′

√
1−f ′2

,

V3 = −xf ′′ sinh y cosh y sinh z√
−f ′′

√
1−f ′2

, V4 = 0

 (2.44)

and
W1 = − xf ′′ sinh z√

−f ′′
√

1−f ′2
, W2 = 0,

W3 = − xf ′′ cosh z√
−f ′′

√
1−f ′2

, W4 = 0.

 (2.45)
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Thus, using (2.43)-(2.45) in (2.41), we obtain the components of the LBII operator of the
rotational hypersurface (2.1) as

(∆IIΓ)1 = − (xf ′′2(2−3f ′2)−f ′(2f ′′−xf ′′′)(1−f ′2)) cosh y cosh z

2xf ′f ′′2
√

1−f ′2
,

(∆IIΓ)2 = − (xf ′′2(2−3f ′2)−f ′(2f ′′−xf ′′′)(1−f ′2)) sinh y

2xf ′f ′′2
√

1−f ′2
,

(∆IIΓ)3 = − (xf ′′2(2−3f ′2)−f ′(2f ′′−xf ′′′)(1−f ′2)) cosh y sinh z

2xf ′f ′′2
√

1−f ′2
,

(∆IIΓ)4 = xf ′′2(4−3f ′2)+f ′(2f ′′−xf ′′′)(1−f ′2)
2xf ′′2

√
1−f ′2

,


(2.46)

where f(x) ̸= ax + b, a, b ∈ R and f ′′′ = d3f(x)
dx3 . So, we can give the following theorem:

Theorem 2.11. The rotational hypersurface (2.1) about spacelike axis in E4
1 is not LBII-

minimal.

Proof. We know that, a hypersurface Γ is LBII-minimal if it satisfies ∆IIΓ = 0. So,
the rotational hypersurface (2.1) in E4

1 is LBII-minimal, if all components of the LBII

operator ∆IIΓ vanishes, i.e. (∆IIΓ)i, i = 1, 2, 3, 4, which have been obtained in (2.46)
vanish identically. Hence, the solution of (∆IIΓ)i = 0, i = 1, 2, 3, in (2.46) is obtained
with the Mathematica as

f(x) =
∫ x

1
InverseFunct

[1
8

(
#1

(
2#12 − 1

)√
1 − #12 + sin−1(#1)

)
&
] [

c2 − 1
3

c1t3
]

dt+c3

and since this solution doesn’t satisfy (∆IIΓ)4 = 0 in (2.46), this hypersurface cannot be
LBII-minimal. �

2.4. The third Laplace-Beltrami operator on rotational hypersurface about
spacelike axis in E4

1

The third Laplace-Beltrami (LBIII) operator of a smooth function φ = φ(x1, x2, x3)|D,
(D ⊂ R3) of class C3 with respect to the nondegenerate third fundamental form of hyper-
surface Γ is the operator which is defined as follows:

∆IIIφ = 1√
|det[mij ]|

3∑
i,j=1

∂

∂xi

(√
|det[mij ]|mij ∂φ

∂xj

)
, (2.47)

where mij are the components of the matrix (mij)−1. Here, the matrix of third funda-
mental form, its inverse and the determinant are obtained by

[mij ] =

 m11 m12 m13
m21 m22 m23
m31 m32 m33

 = − 1
−1 + f ′2

 f ′′2

−1+f ′2 0 0
0 f ′2 0
0 0 f ′2 cosh2 y

 , (2.48)

[mij ] = (−1 + f ′2)

 − (−1+f ′2)
f ′′2 0 0
0 − 1

f ′2 0
0 0 − 1

f ′2 cosh2 y

 (2.49)

and

det[mij ] = −f ′4f ′′2 cosh2 y

(−1 + f ′2)4 , (2.50)
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respectively. Here, mij =
⟨
(NΓ)ui , (NΓ)uj

⟩
. So, using (1.11), (1.12) and (2.47) the LBIII

operator of a smooth function φ = φ(x, y, z) can be written as

∆IIIφ = − 1√
|det[mij ]|



∂
∂x

(
(m22m33−m23m32)φx+(m13m32−m12m33)φy+(m12m23−m13m22)φz√

|det[mij ]|

)
+ ∂

∂y

(
(m23m31−m21m33)φx+(m11m33−m13m31)φy+(m13m21−m11m23)φz√

|det[mij ]|

)
+ ∂

∂z

(
(m21m32−m22m31)φx+(m12m31−m11m32)φy+(m11m22−m12m21)φz√

|det[mij ]|

)


,

(2.51)
where
det[mij ] = −m13m22m31+m12m23m31+m13m21m32−m11m23m32−m12m21m33+m11m22m33.

(2.52)
Now, if we denote the LBIII operator of the rotational hypersurface (2.1) in E4

1 as ∆IIIΓ,
then from (2.51), we get

∆IIIΓ = ((∆IIIΓ)1, (∆IIIΓ)2, (∆IIIΓ)3, (∆IIIΓ)4)

= − 1√
|det[mij ]|

(
(U1)x + (V1)y + (W1)z, (U2)x + (V2)y + (W2)z,
(U3)x + (V3)y + (W3)z, (U4)x + (V4)y + (W4)z

)
, (2.53)

where
Ui = ((m22m33−m23m32)(Γi)x+(m13m32−m12m33)(Γi)y+(m12m23−m13m22)(Γi)z)√

|det[mij ]|
,

Vi = ((m23m31−m21m33)(Γi)x+(m11m33−m13m31)(Γi)y+(m13m21−m11m23)(Γi)z)√
|det[mij ]|

,

Wi = ((m21m32−m22m31)(Γi)x+(m12m31−m11m32)(Γi)y+(m11m22−m12m21)(Γi)z)√
|det[mij ]|

.

 (2.54)

Here, taking i = 1, 2, 3, 4 and using (2.1), (2.48)-(2.50), we have

U1 = f ′2 cosh2 y cosh z
f ′′ , U2 = f ′2 sinh y cosh y

f ′′ ,

U3 = f ′2 cosh2 y sinh z
f ′′ , U4 = f ′3 cosh y

f ′′ ;

 (2.55)

V1 = −xf ′′ sinh y cosh y cosh z
1−f ′2 , V2 = −xf ′′ cosh2 y

1−f ′2 ,

V3 = −xf ′′ sinh y cosh y sinh z
1−f ′2 , V4 = 0

 (2.56)

and
W1 = −xf ′′ sinh z

1−f ′2 , W2 = 0,

W3 = −xf ′′ cosh z
1−f ′2 , W4 = 0.

}
(2.57)

Thus, using (2.55)-(2.57) in (2.53), we obtain the components of the LBIII operator of the
rotational hypersurface (2.1) as

(∆IIIΓ)1 = − (1−f ′2)((1−f ′2)f ′(2f ′′2−f ′f ′′′)−2xf ′′3) cosh y cosh z
f ′2f ′′3 ,

(∆IIIΓ)2 = − (1−f ′2)((1−f ′2)f ′(2f ′′2−f ′f ′′′)−2xf ′′3) sinh y
f ′2f ′′3 ,

(∆IIIΓ)3 = − (1−f ′2)((1−f ′2)f ′(2f ′′2−f ′f ′′′)−2xf ′′3) cosh y sinh z
f ′2(x)f ′′3(x) ,

(∆IIIΓ)4 = − (−1+f ′2)2(3f ′′2−f ′f ′′′)
f ′′3 ,


(2.58)

where f(x) ̸= ax + b, a, b ∈ R. So,

Theorem 2.12. The rotational hypersurface

Γ(x, y, z) =
(

x cosh y cosh z, x sinh y, x cosh y sinh z, d2

√
2x + (d2)2 + d3

)
, d2, d3 ∈ R

about spacelike axis in E4
1 is LBIII-minimal.
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Proof. We know that, a hypersurface Γ is LBIII-minimal if it satisfies ∆IIIΓ = 0. So,
the rotational hypersurface (2.1) in E4

1 is LBIII-minimal, if all components of the LBIII

operator ∆IIIΓ vanishes, i.e. (∆IIIΓ)i, i = 1, 2, 3, 4, which have been obtained in (2.58)
vanish identically. Hence, the solution of the differential equation

3f ′′(x)2 − f ′(x)f ′′′(x) = 0
is obtained as

f(x) =
√

2x + d1d2 + d3,

d1, d2, d3 ∈ R. If we use this function in the first three components of LBIII operator
∆IIIΓ, then for these components to be zero, it must be d1 = (d2)2 and this completes
the proof. �

3. Rotational hypersurfaces about timelike axis in E4
1

In this section, we find the rotational hypersurface about timelike axis according to the
Gaussian and mean curvatures in E4

1 and give some results for the Gauss map of this
hypersurface. Also, we study the LBII and LBIII operators on the rotational hypersurface
with timelike axis in E4

1 and give some characterizations for LBII-minimality and LBIII-
minimality of this hypersurface.

3.1. Curvatures of rotational hypersurfaces about timelike axis in E4
1

For a differentiable function g(x) : I ⊂ R −→ R, the rotational hypersurface which is
obtained by rotating the profile curve β(x) = (g(x), 0, 0, x) about timelike axis (1, 0, 0, 0)
is given by

Γ(x, y, z) =


1 0 0 0
0 cos z − sin y sin z − cos y sin z
0 0 cos y − sin y
0 sin z sin y cos z cos y cos z

 .


g(x)

0
0
x


= (g(x), −x cos y sin z, −x sin y, x cos y cos z) , (3.1)

where x ∈ R − {0} and 0 ≤ y, z ≤ 2π.
With the aid of the first differentials of (3.1) with respect to x, y and z, the Gauss map

of the rotational hypersurface (3.1) is obtained from (1.4) by

NΓ = 1√
g′2 − 1

(
1, −g′ cos y sin z, −g′ sin y, g′ cos y cos z

)
(3.2)

and from (3.2), we get

⟨NΓ, NΓ⟩ = 1. (3.3)
Here, we state g = g(x) and g′ = dg(x)

dx .
Also, from (1.5), we obtain the matrix of the first fundamental form, its inverse and

determinant as

[gij ] =

 1 − g′2 0 0
0 x2 0
0 0 x2 cos2 y

 , (3.4)

[gij ] =


1

1−g′2 0 0
0 1

x2 0
0 0 1

x2 cos2 y

 (3.5)

and
det[gij ] = −x4

(
g′2 − 1

)
cos2 y, (3.6)
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respectively. From (1.6), the matrix form of the second fundamental form of the hyper-
surface (3.1), its inverse and determinant as

[hij ] = − 1√
g′2 − 1

 g′′ 0 0
0 xg′ 0
0 0 xg′ cos2 y

 , (3.7)

[hij ] =
√

g′2 − 1

 − 1
g′′ 0 0
0 − 1

xg′ 0
0 0 − 1

xg′ cos2 y

 (3.8)

and
det[hij ] = −x2g′2g′′ cos2 y

(g′2 − 1)3/2 , (3.9)

respectively and here, we state g′′ = d2g(x)
dx2 . Hence, using (3.3), (3.6) and (3.9) in (1.8), we

can give the following theorem:

Theorem 3.1. The Gaussian curvature of the rotational hypersurface (3.1) is

K = g′2g′′

x2 (g′2 − 1)
5
2

. (3.10)

Here, we want to find the function g according to the Gaussian curvature K by solving
the equation (3.10). For solving the differential equation (3.10), let us put

C = g′3

x6 (g′2 − 1)3/2 . (3.11)

By differentiating (3.11) and using (3.10), we have

C ′ = −3K(x) + 6x3C

x4 . (3.12)

The solution of (3.12) which is a first order differential equation with respect to C is
obtained by

C = c3 − 3
∫ x

1 K(t)t2 dt

x6 , (3.13)

c3 ∈ R. From (3.11) and (3.13), we obtain that

g(x) = ±
∫ (

c3 − 3
∫ x

1 K(t)t2 dt
) 1

3√
(c3 − 3

∫ x
1 K(t)t2 dt)

2
3 − 1

dx. (3.14)

Hence, we can state the following theorem:

Theorem 3.2. The rotational hypersurface (3.1) about timelike axis in E4
1 can be parametrized

according to the Gaussian curvature by

Γ(x, y, z) =

±
∫ (

c3 − 3
∫ x

1 K(t)t2 dt
) 1

3√
(c3 − 3

∫ x
1 K(t)t2 dt)

2
3 − 1

dx, −x cos y sin z, −x sin y, x cos y cos z

 ,

(3.15)
where c3 ∈ R.

Example 3.3. If we take K(x) = e3x

x2 and c3 = −e3 in (3.15), then the rotational hyper-
surface is

Γ(x, y, z) =
(
− ln

(
ex +

√
e2x − 1

)
, −x cos y sin z, −x sin y, x cos y cos z

)
. (3.16)

In the following figures, one can see the projections of the rotational hypersurface (3.16) for
z = 2 into x2x3x4, x1x3x4, x1x2x4 and x1x2x3-spaces in (a), (b), (c) and (d), respectively.
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Figure 3

Also from Theorem 3.2, we can give the following results:

Corollary 3.4. The rotational hypersurface (3.1) about timelike axis in E4
1 with constant

Gaussian curvature (K = k ∈ R) can be parametrized by

Γ(x, y, z) =

±
∫ (

c3 + k − kx3) 1
3√

(c3 + k − kx3)
2
3 − 1

dx, −x cos y sin z, −x sin y, x cos y cos z

 .

Corollary 3.5. The rotational hypersurface (3.1) about timelike axis in E4
1 with zero

Gaussian curvature can be parametrized by

Γ(x, y, z) =

± x(c3)
1
3√

(c3)
2
3 − 1

, −x cos y sin z, −x sin y, x cos y cos z

 .

Also, using (3.5) and (3.7) in (1.7), the shape operator of the rotational hypersurface
(3.1) is obtained by

S = 1√
g′2 − 1


g′′

g′2−1 0 0
0 −g′

x 0
0 0 −g′

x

 . (3.17)

So, from (1.9), (3.3) and (3.17), we get

Theorem 3.6. The mean curvature of the rotational hypersurface (3.1) is

H = 2g′(1 − g′2) + xg′′

3x (g′2 − 1)3/2 . (3.18)

For solving the differential equation (3.18), let us take

D = g′(x)
x
√

g′2 − 1
. (3.19)
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By differentiating (3.19) and using (3.18), we have

D′ = −3D + 3H(x)
x

. (3.20)

The solution of (3.20) which is a first order differential equation with respect to D is
obtained by

D = −3
∫ x

1 H(t)t2 dt + c4
x3 , (3.21)

c4 ∈ R. From (3.19) and (3.21), we obtain that

g(x) = ±
∫ −3

∫ x
1 H(t)t2 dt + c4√

(−3
∫ x

1 H(t)t2 dt + c4)2 − x4
dx. (3.22)

Thus, we can give the following theorem:

Theorem 3.7. The rotational hypersurface (3.1) about timelike axis in E4
1 can be parametrized

according to the mean curvature by

Γ(x, y, z) =

±
∫ −3

∫ x
1 H(t)t2 dt + c4√

(−3
∫ x

1 H(t)t2 dt + c4)2 − x4
dx, −x cos y sin z, −x sin y, x cos y cos z

 ,

(3.23)
where c4 ∈ R.

Example 3.8. If we take H(x) = −2 cot x−x csc2 x
3x and c4 = cot(1) in (3.23), then the

rotational hypersurface is

Γ(x, y, z) =
(

arcsin(
√

2 sin x)√
2

, −x cos y sin z, −x sin y, x cos y cos z

)
. (3.24)

In the following figures, one can see the projections of the rotational hypersurface (3.24) for
z = 2 into x2x3x4, x1x3x4, x1x2x4 and x1x2x3-spaces in (a), (b), (c) and (d), respectively.

Figure 4
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3.2. Gauss map of the rotational hypersurface about timelike axis in E4
1

From (3.2), let us parametrize the Gauss map of the rotational hypersurface (3.1) about
timelike axis in E4

1 as

ΓG(x, y, z) = 1√
g′2 − 1

(
1, −g′ cos y sin z, −g′ sin y, g′ cos y cos z

)
. (3.25)

Then, the normal of (3.25) is

NG = − 1√
g′2 − 1

(
1, −g′ cos y sin z, −g′ sin y, g′ cos y cos z

)
(3.26)

and from (3.26), we have
⟨NG, NG⟩ = 1. (3.27)

From (1.5), we obtain the matrix of the first fundamental form, its inverse and deter-
minant as

[gij ]G = 1
g′2 − 1

 −g′′2

g′2−1 0 0
0 g′2 0
0 0 g′2 cos2 y

 , (3.28)

[gij ]G = (g′2 − 1)

 −g′2−1
g′′2 0 0
0 1

g′2 0
0 0 1

g′2 cos2 y

 (3.29)

and
det([gij ]G) = −g′4g′′2 cos2 y

(g′2 − 1)4 , (3.30)

respectively. From (1.6), the matrix form of the second fundamental form of (3.25), its
inverse and determinant as

[hij ]G = 1
g′2 − 1

 −g′′2

g′2−1 0 0
0 g′2 0
0 0 g′2 cos2 y

 , (3.31)

[hij ]G = (g′2 − 1)

 −g′2−1
g′′2 0 0
0 1

g′2 0
0 0 1

g′2 cos2 y

 (3.32)

and
det([hij ]G) = −g′4g′′2 cos2 y

(g′2 − 1)4 , (3.33)

respectively. Hence, using (3.27), (3.30) and (3.33) in (1.8), we have

Theorem 3.9. The Gaussian curvature of (3.25) is
KG = 1. (3.34)

Also, using (3.29) and (3.31) in (1.7), the shape operator of (3.25) is obtained by

SG =

 1 0 0
0 1 0
0 0 1

 . (3.35)

So, from (1.9), (3.27) and (3.35), we get

Theorem 3.10. The mean curvature of (3.25) is
HG = 1. (3.36)
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3.3. The second Laplace-Beltrami operator on rotational hypersurface
about timelike axis in E4

1

Using the same procedure in subsection 2.3, we obtain the components Ui, Vi and Wi

which are defined in (2.42) as

U1 = xg′2 cos y√
−g′′

√
g′2−1

, U2 = − xg′ cos2 y sin z√
−g′′

√
g′2−1

,

U3 = − xg′ sin y cos y√
−g′′

√
g′2−1

, U4 = xg′ cos2 y cos z√
−g′′

√
g′2−1

;

 (3.37)

V1 = 0, V2 = xg′′ sin y cos y sin z√
−g′′

√
g′2−1

,

V3 = − xg′′ cos2 y√
−g′′

√
g′2−1

, V4 = −xg′′ sin y cos y cos z√
−g′′

√
g′2−1

 (3.38)

and
W1 = 0, W2 = − xg′′ cos z√

−g′′
√

g′2−1
,

W3 = 0, W4 = − xg′′ sin z√
−g′′

√
g′2−1

.

 (3.39)

Thus, using (3.37)-(3.39) in (2.41), we obtain the components of the LBII operator of the
rotational hypersurface (3.1) as

(∆IIΓ)1 = xg′′2(4−3g′2)+g′(2g′′−xg′′′)(1−g′2)
2xg′′2

√
g′2−1

,

(∆IIΓ)2 = (xg′′2(2−3g′2)−g′(2g′′−xg′′′)(1−g′2)) cos y sin z

2xg′g′′2
√

g′2−1
,

(∆IIΓ)3 = (xg′′2(2−3g′2)−g′(2g′′−xg′′′)(1−g′2)) sin y

2xg′g′′2
√

g′2−1
,

(∆IIΓ)4 = − (xg′′2(2−3g′2)−g′(2g′′−xg′′′)(1−g′2)) cos y cos z

2xg′g′′2
√

g′2−1
,


(3.40)

where g(x) ̸= ax + b, a, b ∈ R and g′′′ = d3g(x)
dx3 . So, from the proof of the Theorem 2.11,

we can state the following theorem:

Theorem 3.11. The rotational hypersurface (3.1) about timelike axis in E4
1 is not LBII-

minimal.

3.4. The third Laplace-Beltrami operator on rotational hypersurface about
timelike axis in E4

1

The matrix of third fundamental form, its inverse and the determinant are obtained by

[mij ] = 1
g′2 − 1

 − g′′2

g′2−1 0 0
0 g′2 0
0 0 g′2 cos2 y

 , (3.41)

[mij ] = (g′2 − 1)

 −g′2−1
g′′2 0 0
0 1

g′2 0
0 0 1

g′2 cos2 y

 (3.42)

and

det[mij ] = −g′4g′′2 cos2 y

(g′2 − 1)4 , (3.43)
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respectively. Using the same procedure in subsection 2.4, we obtain the components Ui,
Vi and Wi which are defined in (2.54) as

U1 = g′3 cos y
g′′ , U2 = −g′2 cos2 y sin z

g′′ ,

U3 = −g′2 sin y cos y
g′′ , U4 = g′2 cos2 y cos z

g′′ ;

 (3.44)

V1 = 0, V2 = −xg′′ sin y cos y sin z
g′2−1 ,

V3 = xg′′ cos2 y
g′2−1 , V4 = xg′′ sin y cos y cos z

g′2−1

 (3.45)

and
W1 = 0, W2 = xg′′ cos z

g′2−1 ,

W3 = 0, W4 = xg′′ sin z
g′2−1 .

}
(3.46)

Thus, using (3.44)-(3.46) in (2.53), we obtain the components of the LBIII operator of the
rotational hypersurface (3.1) as

(∆IIIΓ)1 = (g′2−1)2(−3g′′2+g′g′′′)
g′′3 ,

(∆IIIΓ)2 = (g′2−1)(g′(1−g′2)(2g′′2−g′g′′′)−2xg′′3) cos y sin z

g′2g′′3 ,

(∆IIIΓ)3 = − (g′2−1)(g′(1−g′2)(2g′′2−g′g′′′)−2xg′′3) sin y

g′2g′′3 ,

(∆IIIΓ)4 = (g′2−1)(g′(1−g′2)(2g′′2−g′g′′′)−2xg′′3) cos y cos z

g′2g′′3 ,


(3.47)

where g(x) ̸= ax + b, a, b ∈ R. So, from the proof of the Theorem 2.12, we can state the
following theorem:

Theorem 3.12. The rotational hypersurface

Γ(x, y, z) =
(

d4

√
2x + (d4)2 + d5, −x cos y sin z, −x sin y, x cos y cos z

)
, d4, d5 ∈ R

about timelike axis in E4
1 is LBIII-minimal.

4. Rotational hypersurfaces about lightlike axis in E4
1

In this section, we give some results for the Gaussian and mean curvatures of a rotational
hypersurface with lightlike axis and this hypersurface’s Gauss map. Also, we study the
LBII and LBIII operators on the rotational hypersurface with lightlike axis in E4

1 and give
some characterizations for LBII-minimality and LBIII-minimality of this hypersurface.

4.1. Curvatures of rotational hypersurfaces about lightlike axis in E4
1

For a differentiable function h(x) : I ⊂ R −→ R, the rotational hypersurface which is
obtained by rotating the profile curve γ(x) = (x, h(x), 0, 0) about lightlike axis (1, 1, 0, 0)
is given by

Γ(x, y, z) =


y2+z2

2 + 1 −y2+z2

2 y z
y2+z2

2 1 − y2+z2

2 y z
y −y 1 0
z −z 0 1

 .


x

h(x)
0
0


=
( (

y2+z2

2 + 1
)

x − y2+z2

2 h(x), y2+z2

2 x +
(
1 − y2+z2

2

)
h(x),

xy − h(x)y, xz − h(x)z

)
, (4.1)

where x ∈ R − {0}.
In the following figures, one can see the projections of the rotational hypersurface (4.1)

for h(x) = sinx and z = 2 into x2x3x4, x1x3x4, x1x2x4 and x1x2x3-spaces in (a), (b), (c)
and (d), respectively.
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Figure 5

With the aid of the first differentials of (4.1) with respect to x, y and z, the Gauss map
of the rotational hypersurface (4.1) is obtained by

NΓ =
(
y2 + z2 −

(
y2 + z2 + 2

)
h′, y2 + z2 − 2 −

(
y2 + z2)h′, 2y (1 − h′) , 2z (1 − h′)

)
2
√

1 − h′2
(4.2)

and from (4.2), we get
⟨NΓ, NΓ⟩ = 1. (4.3)

Here, we state h = h(x) and h′ = dh(x)
dx .

Also, from (1.5), we obtain the matrix of the first fundamental form, its inverse and
determinant as

[gij ] =

 h′2 − 1 0 0
0 (x − h)2 0
0 0 (x − h)2

 , (4.4)

[gij ] =


1

h′2 − 1 0 0
0 1

(x − h)2 0
0 0 1

(x − h)2

 (4.5)

and
det[gij ] = (x − h)4

(
h′2 − 1

)
, (4.6)

respectively. From (1.6), the matrix form of the second fundamental form of the hyper-
surface (4.1), its inverse and determinant as

[hij ] = 1√
1 − h′2

 −h′′ 0 0
0 (x − h)(h′ − 1) 0
0 0 (x − h)(h′ − 1)

 , (4.7)

[hij ] =
√

1 − h′2

 − 1
h′′ 0 0
0 1

(x−h)(h′−1) 0
0 0 1

(x−h)(h′−1)

 (4.8)
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and

det[hij ] = −(x − h)2 √
1 − h′2h′′

(1 + h′)2 , (4.9)

respectively and here, we state h′′ = d2h(x)
dx2 . Hence, using (4.3), (4.6) and (4.9) in (1.8), we

can give the following theorem:

Theorem 4.1. The Gaussian curvature of the rotational hypersurface (4.1) is

K = h′′

(x − h)2 (h′ + 1)2 √
1 − h′2

. (4.10)

From (4.10), we have

Corollary 4.2. The rotational hypersurface (4.1) is flat if and only if h(x) = ax + b,
a ∈ R − {−1, 1}, b ∈ R.

Also, using (4.5) and (4.7) in (1.7), the shape operator of the rotational hypersurface
(4.1) is obtained by

S = 1√
1 − h′2


h′′

(1−h′2) 0 0
0 h′−1

(x−h) 0
0 0 h′−1

(x−h)

 . (4.11)

So, from (1.9), (4.3) and (4.11), we get

Theorem 4.3. The mean curvature of the rotational hypersurface (4.1) is

H = 2(1 − h′2)(−1 + h′) + (x − h)h′′

3(x − h) (1 − h′2)3/2 . (4.12)

If the rotational hypersurface (4.1) in E4
1 is minimal, then from (4.12) it must be

2(h′ − 1)(1 − h′2) + (x − h)h′′ = 0. (4.13)
Here, by taking p(x) = h(x) − x in (4.13), we get

2p′2(p′ + 2) + pp′′ = 0. (4.14)
If we take p′(x) = f(x), then we get

p′′ = f ′ = df

dp
f (4.15)

and by using (4.15) in (4.14), we have

− dp

p
= df

2f(f + 2)
, (4.16)

where p ̸= 0 ̸= f(f + 2). By integrating (4.16), we get

− ln(p) = 1
4

(
ln
(

f

2 + f

))
− ln(a), (4.17)

a ∈ R+ and so

f =
2
(

a
p

)4

1 −
(

a
p

)4 . (4.18)

Since f = p′ = dp
dx , from (4.18) we have

1 −
(

a
p

)4

2
(

a
p

)4 dp = dx (4.19)
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and by integrating (4.19), we reach that
p5 − 5a4p = 10a4(x + b), (4.20)

b ∈ R. Finally using p(x) = h(x) − x in (4.20), we obtain the equation (h − x)5 − 5a4h =
5a4(x + 2b).

Conversely, if h satisfies the equation (h−x)5 −5a4h = 5a4(x+2b), then (4.12) vanishes.
Thus, we can state the following theorem:

Theorem 4.4. The rotational hypersurface (4.1) in E4
1 is minimal if and only if h(x)

satisfies the equation
(h − x)5 − 5a4h = 5a4(x + 2b), (4.21)

a ∈ R+, b ∈ R.

4.2. Gauss map of the rotational hypersurface about lightlike axis in E4
1

From (4.2), let us parametrize the Gauss map of the rotational hypersurface about
lightlike axis in E4

1 as

ΓG(x, y, z) =
(
y2 + z2 −

(
y2 + z2 + 2

)
h′, y2 + z2 − 2 −

(
y2 + z2)h′, 2y (1 − h′) , 2z (1 − h′)

)
2
√

1 − h′2
.

(4.22)
Then, the normal of (4.22) is

NG =
(
−y2 − z2 +

(
y2 + z2 + 2

)
h′, −y2 − z2 + 2 +

(
y2 + z2)h′, 2y (h′ − 1) , 2z (h′ − 1)

)
2
√

1 − h′2
(4.23)

and from (4.23), we have
⟨NG, NG⟩ = 1. (4.24)

From (1.5), we obtain the matrix of the first fundamental form, its inverse and deter-
minant as

[gij ]G =


− h′′2

(h′2−1)2 0 0
0 1−h′

1+h′ 0
0 0 1−h′

1+h′

 , (4.25)

[gij ]G =

 − (h′2−1)2

h′′2 0 0
0 1+h′

1−h′ 0
0 0 1+h′

1−h′

 (4.26)

and
det([gij ]G) = − h′′2

(h′ + 1)4 , (4.27)

respectively. From (1.6), the matrix form of the second fundamental form of (4.22), its
inverse and determinant as

[hij ]G = −


h′′2

(h′2−1)2 0 0
0 −1+h′

1+h′ 0
0 0 −1+h′

1+h′

 , (4.28)

[hij ]G =

 − (h′2−1)2

h′′2 0 0
0 1+h′

1−h′ 0
0 0 1+h′

1−h′

 (4.29)

and
det([hij ]G) = − h′′2

(h′ + 1)4 , (4.30)
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respectively. Hence, using (4.24), (4.27) and (4.30) in (1.8), we can give the following
theorem:

Theorem 4.5. The Gaussian curvature of (4.22) is

KG = 1. (4.31)

Also, using (4.26) and (4.28) in (1.7), the shape operator of (4.22) is obtained by

SG =

 1 0 0
0 1 0
0 0 1

 . (4.32)

So, from (1.9), (4.24) and (4.32), we get

Theorem 4.6. The mean curvature of (4.22) is

HG = 1. (4.33)

4.3. The second Laplace-Beltrami operator on rotational hypersurface
about lightlike axis in E4

1

Using the same procedure in subsection 2.3, we obtain the components Ui, Vi and Wi

which are defined in (2.42) as

U1 = (x−h)(h′−1)(y2+z2+2−(y2+z2)h′)
2
√

−h′′
√

1−h′2
, U2 = (h−x)(h′−1)((y2+z2−2)h′−y2−z2)

2
√

−h′′
√

1−h′2
,

U3 = y(h−x)(1−h′)2√
−h′′

√
1−h′2

, U4 = z(h−x)(1−h′)2√
−h′′

√
1−h′2

;

 (4.34)

V1 = y(h−x)h′′√
−h′′

√
1−h′2

, V2 = y(h−x)h′′√
−h′′

√
1−h′2

,

V3 = (h−x)h′′√
−h′′

√
1−h′2

, V4 = 0

 (4.35)

and
W1 = − z(x−h)h′′√

−h′′
√

1−h′2
, W2 = − z(x−h)h′′√

−h′′
√

1−h′2
,

W3 = 0, W4 = − (x−h)h′′√
−h′′

√
1−h′2

.

 (4.36)

Thus, using (4.34)-(4.36) in (2.41), we obtain the components of the LBII operator of the
rotational hypersurface (4.1) as

(∆IIΓ)1 = −

−2(h′ − 1)2(h′ + 1)((y2 + z2)h′ − y2 − z2 − 2)h′′

+(x − h)(−4(y2 + z2 − 1) + (y2 + z2 + 6)h′ + 3(y2 + z2)h′2)h′′2

−(x − h)((y2 + z2)h′ − y2 − z2 − 2)(h′2 − 1)h′′′

4(x−h)
√

1−h′2h′′2 ,

(∆IIΓ)2 = −

−2(h′ − 1)2(h′ + 1)((y2 + z2 − 2)h′ − y2 − z2)h′′

+(x − h)(−4(y2 + z2 − 3) + (y2 + z2 + 4)h′ + 3(y2 + z2 − 2)h′2)h′′2

−(x − h)((y2 + z2 − 2)h′ − y2 − z2)(h′2 − 1)h′′′

4(x−h)
√

1−h′2h′′2 ,

(∆IIΓ)3 = y(−1+h′)(2(h′−1)2(h′+1)h′′−(x−h)(3h′+4)h′′2+(x−h)(h′2−1)h′′′)
2(x−h)

√
1−h′2h′′2 ,

(∆IIΓ)4 = z(−1+h′)(2(h′−1)2(h′+1)h′′−(x−h)(3h′+4)h′′2+(x−h)(h′2−1)h′′′)
2(x−h)

√
1−h′2h′′2 ,


(4.37)

where h(x) ̸= ax + b, a, b ∈ R and h′′′ = d3h(x)
dx3 .
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4.4. The third Laplace-Beltrami operator on rotational hypersurface about
lightlike axis in E4

1

The matrix of third fundamental form, its inverse and the determinant are obtained by

[mij ] =


− h′′2

(h′2−1)2 0 0
0 1−h′

1+h′ 0
0 0 1−h′

1+h′

 , (4.38)

[mij ] =

 − (h′2−1)2

h′′2 0 0
0 1+h′

1−h′ 0
0 0 1+h′

1−h′

 (4.39)

and

det[mij ] = − h′′2

(h′ + 1)4 , (4.40)

respectively. Using the same procedure in subsection 2.4, we obtain the components Ui,
Vi and Wi which are defined in (2.54) as

U1 = (1−h′)2(y2+z2+2−(y2+z2)h′)
2h′′ , U2 = (1−h′)2(y2+z2−(y2+z2−2)h′)

2h′′ ,

U3 = y(1−h′)3

h′′ , U4 = z(1−h′)3

h′′ ;

}
(4.41)

V1 = y(x−h)h′′

h′2−1 , V2 = y(x−h)h′′

h′2−1 ,

V3 = (x−h)h′′

h′2−1 , V4 = 0

}
(4.42)

and
W1 = z(x−h)h′′

h′2−1 , W2 = z(x−h)h′′

h′2−1 ,

W3 = 0, W4 = (x−h)h′′

h′2−1 .

}
(4.43)

Thus, using (4.41)-(4.43) in (2.53), we obtain the components of the LBIII operator of the
rotational hypersurface (4.1) as

(∆IIIΓ)1 = −

(1 + h′)2(−(h′ − 1)2(h′ + 1)(3(y2 + z2)h′ − 3y2 − 3z2 − 4)h′′2

+4(x − h)h′′3 + (h′ − 1)3(h′ + 1)((y2 + z2)h′ − y2 − z2 − 2)h′′′)
2(h′2−1)h′′3 ,

(∆IIIΓ)2 = −

(1 + h′)2(−(h′ − 1)2(h′ + 1)(3(y2 + z2 − 2)h′ − 3y2 − 3z2 + 2)h′′2

+4(x − h)h′′3 + (h′ − 1)3(h′ + 1)((y2 + z2 − 2)h′ − y2 − z2)h′′′)
2(h′2−1)h′′3 ,

(∆IIIΓ)3 = −y(h′2−1)2(−3h′′2+(h′−1)h′′′)
h′′3 ,

(∆IIIΓ)4 = − z(h′2−1)2(−3h′′2+(h′−1)h′′′)
h′′3 ,


(4.44)

where h(x) ̸= ax + b, a, b ∈ R. So,

Theorem 4.7. The rotational hypersurface

Γ(x, y, z) =


(

y2+z2

2 + 1
)

x − y2+z2

2 (2xd6−2
√

−2d6(x+d7)−1
2d6

),
y2+z2

2 x +
(
1 − y2+z2

2

)
(2xd6−2

√
−2d6(x+d7)−1
2d6

),

xy − (2xd6−2
√

−2d6(x+d7)−1
2d6

)y, xz − (2xd6−2
√

−2d6(x+d7)−1
2d6

)z

 , d6, d7 ∈ R

about lightlike axis in E4
1 is LBIII-minimal.

Proof. The solution of the differential equation

−3h′′2 + (h′ − 1)h′′′ = 0
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is obtained as

h(x) = xd6 −
√

−2d6(x + d7)
d6

+ d8, d6, d7, d8 ∈ R.

If we use this function in the first two components of LBIII operator ∆IIIΓ, then for
these components to be zero, it must be d8 = −1

2d6
. So, the proof completes. �

Here, we must note that the Gaussian and mean curvatures, which are given for the
rotational hypersurfaces in this study, can be obtained by taking a = b = 0 in [11].
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