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Abstract

In this study, we study rotational hypersurfaces in 4-dimensional Lorentz-Minkowski space.
We find the rotational hypersurfaces about spacelike axis according to Gaussian and mean
curvatures in Ef and give some results with the aid of the Gaussian and mean curvatures.
After that, we deal with the Gauss map of rotational hypersurface about spacelike axis by
obtaining the Gaussian and mean curvatures. We obtain the second and third Laplace-
Beltrami operators on rotational hypersurface about spacelike axis in Ef. Also, we give
these characterizations for rotational hypersurfaces about timelike and lightlike axes, too.
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1. Introduction

It is known that a rotational hypersurface is defined as a hypersurface rotating a curve
around an axis. In this context, if  : I C R — m is a curve in a plane 7 in 4-
dimensional Lorentz-Minkowski space Ef and [ is a straight line in E{, then a rotational
hypersurface is defined by a hypersurface rotating the profile curve o around the axis [.
Furthermore, if the profile curve « rotates around the axis [ and it simultaneously displaces
parallel lines orthogonal to the axis [, then the obtained hypersurface is called helicoidal
hypersurface with the axis . With the aid of these definitions, the differential geometry of
rotational (hyper)surfaces, helicoidal (hyper)surfaces or other types of (hyper)surfaces in 3
or higher-dimensional Euclidean, Minkowskian, Galilean, and pseudo-Galilean spaces have
been studied by scientists. For instance, finite type surfaces of revolution in a Euclidean
3-space have been classified in [6] and some properties about surfaces of revolution in
four dimensions have been given in [17]. In [5], the authors have studied the translation
surfaces in the 3-dimensional Euclidean and Lorentz-Minkowski spaces under the condition
Ay — i i € R, where AT denotes the Laplacian of the surface with respect to
the nondegenerate third fundamental form //I and in [8], the authors have classified
the translation surfaces in three dimensional Galilean space G satisfying Alz; = \x;,
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\; € R, where Al denotes the Laplacian of the surface with respect to the nondegenerate
second fundamental form I7 (throughout this study, we call the operators A/ and AT as
second Laplace-Beltrami operator and third Laplace-Beltrami operator, respectively). The
general rotational surfaces in Minkowski 4-space and the third Laplace-Beltrami operator
and the Gauss map of the rotational hypersurface in Euclidean 4-space have been studied
in [10] and [14], respectively. Also, Dini-type helicoidal hypersurface in E* and Dini-
type helicoidal hypersurfaces with timelike axis in E{ have been studied in [12] and [13],
respectively. In [7], the authors have been classified complete hypersurfaces in E* with
constant mean curvature and constant scalar curvature. In [2], Arslan and his friends
have considered generalized rotational surfaces imbedded in a Euclidean space of four
dimensions and also they have given some special examples of these surfaces in £* and in
[3], the authors have studied translation surfaces in Euclidean 4-space. Hypersurfaces in
Euclidean 4-space with harmonic mean curvature vector field have been studied in [15]. In
[19], Yoon has studied rotational surfaces with finite type Gauss map in Euclidean 4-space.
Minimal translation hypersurfaces in £E* have been studied by Moruz and Munteanu [18].
Also, in [1], the authors have studied the Monge hypersurfaces in Euclidean 4-space with
density. Furthermore, Izumiya et al. have introduced the notion of flatness for lightlike
hypersurfaces and studied their singularities [16]. In [4], the authors have studied Lorentz
hypersurfaces in Ej satisfying AH = aH , where H is the mean curvature vector field of
a hypersurface, A is Laplace operator and « is a constant and they have shown that the
Lorentz hypersurface satisfying this condition has constant mean curvature. The explicit
parameterizations of rotational hypersurfaces in Lorentz-Minkowski space ET" have been
given and rotational hypersurfaces in E] with constant mean curvature have been obtained
in [9]. In [11], the author has found the equations for Gaussian and mean curvatures of the
helicoidal hypersurfaces in E7. Also, he has obtained a theorem classifying the helicoidal
hypersurface with timelike axis satisfying AH = AH, where A is a 4 x 4 matrix.

In the present paper, we study the rotational hypersurfaces in 4-dimensional Lorentz-
Minkowski space. In this context, firstly we give the Gaussian and mean curvatures of
rotational hypersurfaces (which are special types of helicoidal hypersurfaces studied in
[11]) about spacelike, timelike and lightlike axes in E{. Also, we find the rotational
hypersurfaces about spacelike and timelike axes according to the Gaussian and mean
curvatures in Ef and give some results with the aid of these curvatures. After that, we
deal with the Gauss map of rotational hypersurfaces about spacelike, timelike and lightlike
axes by obtaining the Gaussian and mean curvatures. Also, we study the second and third
Laplace-Beltrami (LB and LB™!) operators on rotational hypersurface about spacelike,
timelike and lightlike axes in Ef.

Now, let us recall some fundamental notions for hypersurfaces in Lorentz-Minkowski
4-space.

If 7 = (r1,x2,%3,24), Y = (y1, Y2, Y3, y4) and 7 = (21, 22, 23, 24) are three vectors in
E{, then the inner product and vector product are defined by

(Z,Y) = —z151 + Tay2 + T3y3 + Tays (1.1)

and

—€1 €2 €3 €4

XY x T =det | T T2 T3 T4 (1.2)
Y Y2 Ys Y4
21 22 23 Z4

respectively. Also, the norm of the vector @ is || 2 || = \/|(Z, T)|.
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If
r:Ucek®— F} (1.3)
(w1, ug,ug) — I'(ui, u,uz) = (I (ur, ug, uz), Na(ur, ug, us), I's(ur, ug, ug), La(ui, ug, uz))

is a hypersurface in Ef, then the Gauss map (i.e., the unit normal vector field), the matrix
forms of the first and second fundamental forms are

_ Dy X Ty X Ty
[Ty X Ty X FU3||’

gi1 g12 913
[9i] = | 921 922 923 (1.5)

931 932 933

Ny (1.4)

and

—~
—_
(@)

~

hi1 hiz his
[hij) = | ho1 hoa hos
h31 hsa hss
respectively. Here g;; = <rui,ruj>, hij = <ruiuj,NF>, Tui = 3, Ty = g 5 €
{1,2,3}).
Also, the matrix of shape operator of the hypersurface (1.3) is
S = layj] = [9"].[hj], (1.7)

where [¢/] is the inverse matrix of [g;;].
With the aid of (1.5)-(1.7), the Gaussian curvature and mean curvature of a hypersurface
in £} are given by

o det[hij]
K = gdet[gij] (1.8)
and
3eH = tr(S), (1.9)

respectively. Here, € = (Np, Nr) . For more details about hypersurfaces in Ei‘, we refer to
[11,13] and etc. Also, the inverse of an arbitrary matrix

Ann Az Ass
[Aij] = | A1 Az Az (1.10)
Az Azy Asg
in B} is
- 1 AggAgs — AgzAzy A13Azz — A1 Azs A1aAgz — A13Az
[AY] = det[Ay] Aoz Azt — A1 Aszs AnnAss — AizAsr AizAor — Anndas |, (1.11)
UL Ao Asy — AggAs1 AipAsz — AnAszy Ajndss — A1pAn
where

det[A;;] = —A13A2 A3+ A19As3As1 + A13 A2 Ago — A11Ag3 Azg — A12 A1 Azz + A11 Az Ass.

(1.12)

In the present study, we deal with timelike rotational hypersurfaces. One can obtain
corresponding results with same methods for spacelike rotational hypersurfaces, too.
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2. Rotational hypersurfaces about spacelike axis in E}

In this section, we find the rotational hypersurface about spacelike axis according to
the Gaussian and mean curvatures in Ef and give some examples for different Gaussian
and mean curvatures. We study the Gauss map of this hypersurface and obtain the
curvatures of it. Also, we study the LB and LB operators on the rotational hypersurface
with spacelike axis in E{ and give some characterizations for LB-minimality and LB™-
minimality of this hypersurface.

2.1. Curvatures of rotational hypersurfaces about spacelike axis in E}

For a differentiable function f(x): I C R — R, the rotational hypersurface which is
obtained by rotating the profile curve a(x) = (z,0,0, f(z)) about spacelike axis (0, 0,0, 1)
is given by

coshycoshz sinhycoshz sinhz 0 T
- sinh y coshy 0 0 0
P(@,y,2) = coshysinhz sinhysinhz coshz 0 |° 0
0 0 0 1 f(zx)
= (x coshycosh z, z sinh y, z cosh y sinh z, f(z)), (2.1)

where z € R — {0}.
With the aid of the first differentials of (2.1) with respect to z, y and z, the Gauss map
of the rotational hypersurface (2.1) is obtained from (1.4) by

1
Np = ————— (f"coshycosh z, f'sinh y, f’ coshy sinh z, 1) (2.2)

/1 — f/2
and from (2.2), we get
(N, Nr) = 1. (2.3)
Here, we state f = f(x) and f' = %.
Also, from (1.5), we obtain the matrix of the first fundamental form, its inverse and
determinant as

-1 0 0
l9i5] = 0 a? 0 , (2.4)
0 0 a22cosh?y
. f’21— 1 0 0
g/1=| 0 & 0 (2.5)
1
0 0 22 cosh? y
and
det[g;;] = =* (f’2 - 1) cosh?y, (2.6)

respectively. From (1.6), the matrix form of the second fundamental form of the hyper-
surface (2.1), its inverse and determinant as
1 _f// 0 O
hijl = ——=5| 0 f 0 , (2.7)

V1" 0 0 zf'cosh’®y

1
4 0 0
- f/l
W] =\1-f2| 0 & 0 (2.8)
0 0 xf’ cosh?y

and
$2f12f” COSh2 y

det[h;;] = — - f’2)3/2

) (2.9)
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respectively and here, we state f” = %. Hence, using (2.3), (2.6) and (2.9) in (1.8), we

can give the following theorem:
Theorem 2.1. The Gaussian curvature of the rotational hypersurface (2.1) is
F12p1

Here, we want to find the function f according to the Gaussian curvature K by solving
the equation (2.10). For solving the differential equation (2.10), let us put

f/3

K= (2.10)

A= o (2.11)
By differentiating (2.11) and using (2.10), we have
K(x) —623A
A= 38 (@) — 6274 (x)x4 6”4 (2.12)

The solution of (2.12) which is a first order differential equation with respect to A is
obtained by

x 2
a3 K(t)z dt+e1 (2.13)
x
c1 € R. From (2.11) and (2.13), we obtain that
3/2 x
(1-£7) / (3/ K (1)t dt+cl) = 13 (2.14)
1

and so,

()t dt
/ B K o)t _dz. (2.15)
Vi+ @GR +e)

Hence, we can state the following theorem:

Theorem 2.2. The rotational hypersurface (2.1) about spacelike axis in Ef can be parametrized
with respect to the Gaussian curvature by

(37 K()2dt + 1)’ dw)
)%

+ (3 [FK(t)2dt + o
(2.16)

[(z,y,2) = (:z: cosh y cosh z, z sinh y, x cosh y sinh z, i/ \/ g
1+

where ¢1 € R.

Example 2.3. If we take K (z) = :%2 and ¢; = 3 in (2.16), then the rotational hypersurface
is

(2.17)

(V922 — 2) 1+€/@)

I(z,y,2) = (x cosh g cosh z, x sinh y, z cosh y sinh z,

In the following figures, one can see the projections of the rotational hypersurface (2.17) for
z = 2 into wox3xy, T1x3%4, T12224 and xjzoxs-spaces in (a), (b), (c¢) and (d), respectively.
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(c)

Figure 1

Also from Theorem 2.2, we can give the following results:

Corollary 2.4. The rotational hypersurface (2.1) about spacelike axis in Ef with constant
Gaussian curvature (K =k € R) can be parametrized by

ey + k(a3 -1) da;> .
))?

I'(z,y,z) = | x coshycosh z, z sinh y, x cosh y sinh z, i/
\/1+ V(er + k(3 -1

Corollary 2.5. The rotational hypersurface (2.1) about spacelike azis in Ef with zero
Gaussian curvature can be parametrized by

Jc1x
I(z,y,2) = (mcoshycoshz,xsinhy,mcoshysinhz,:I:1) .

14+ /(c1)?

Also, using (2.5) and (2.7) in (1.7), the shape operator of the rotational hypersurface
(2.1) is obtained by

f//
BE R
o o L
So, from (1.9), (2.3) and (2.18), we get
Theorem 2.6. The mean curvature of the rotational hypersurface (2.1) is
2f1(1 — 2 "
g A=) e/ (2.19)

3z (1 — f’2)3/2

Here, we want to find the function f according to the mean curvature H by solving the
equation (2.19). For solving the differential equation (2.19), let us take

po_ @ (2.20)

a1 = [2(z)
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By differentiating (2.20) and using (2.19), we have
3H(z) — 3B

T

B = (2.21)

The solution of (2.21) which is a first order differential equation with respect to B is
obtained by

@ 2
B 3 /i H(t)z; dt + 027 (2.92)
x
¢z € R. From (2.20) and (2.22), we obtain that
(t)t* dt
SIHMEdt e (2.23)

i/\/ + (3 [T H(D)E2 dt + ¢)

Thus, we can give the following theorem:

Theorem 2.7. The rotational hypersurface (2.1) about spacelike azis in E} can be parametrized
with respect to the mean curvature by

2
[(z,y,2) = (xcoshycoshz x sinh y, x cosh y sinh z, :t/ B HUE dt + dl‘) ,
Vat + 3 [E B2 dt + e0)?
(2.24)
where co € R.

Example 2.8. If we take H(z) = ET? and ca = —1 in (2.24), then the rotational hyper-
surface is

[(z,y,2) = <;L‘ cosh g cosh z, x sinh y, x cosh y sinh z, (2.25)

—x
)
In Figure 2, one can see the projections of the rotational hypersurface (2.25) for z = 2
into wex3zy, 12314, T1T2x4 and xijxows-spaces in (a), (b), (c¢) and (d), respectively.

Figure 2



1416 M. Altin, A. Kazan

2.2. Gauss map of the rotational hypersurface about spacelike axis in E}

From (2.2), let us parametrize the Gauss map of the rotational hypersurface (2.1) about
spacelike axis in E{ as

1
Fa(z,y,2) = ———=—— (f'coshycosh z, f'sinhy, f' coshysinh z,1) . (2.26)

V1= f72
Then, from (1.4) the normal of (2.26) is

1
Ng = ——— (f'coshycosh z, f'sinhy, f’ coshysinh z,1) (2.27)

Vi 7
and from (2.27), we have
(Ng, Ng) = 1. (2.28)
From (1.5), we obtain the matrix of the first fundamental form, its inverse and deter-
minant as

_f//2
1 | o Y 0
gsle=y—m | 0 7 0 : (2.29)
0 0 f?cosh?y
- | 0
o= (14| 0 - 0 (230
0 0 1
f2 cosh? y
and o )
f 4" cosh® y
det([gij]c) = BT (2.31)

respectively. From (1.6), the matrix form of the second fundamental form of (2.26), its
inverse and determinant as

112
1 g 00
[hij]G = _f/2 1 f/2 0 ’ (2'32)
0 0  f?cosh?y
_(f;igl) 0 0
(W = (f” - 1) e 0 (2.33)
0 0 1
f2 cosh? y
and 4 112 2
f'*f"% cosh” y
det([hijla) = o (2.34)

respectively. Hence, using (2.28), (2.31) and (2.34) in (1.8), we have
Theorem 2.9. The Gaussian curvature of (2.26) is
Ko =1 (2.35)
Also, using (2.30) and (2.32) in (1.7), the shape operator of (2.26) is obtained by

Sa =

100
010]. (2.36)
00 1

So, from (1.9), (2.28) and (2.36), we get
Theorem 2.10. The mean curvature of (2.26) is
Hg =1. (2.37)
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2.3. The second Laplace-Beltrami operator on rotational hypersurface
about spacelike axis in E}

The second Laplace-Beltrami (LB!!) operator of a smooth function ¢ = p(z!, 22, 23)|p,
(D C R3) of class C® with respect to the nondegenerate second fundamental form of
hypersurface I' is the operator which is defined as follows:

1 5.9 A
A1 9 <,/ydet[hz 1hia 9% ) , (2.38)
|det[hz-mm-zlaﬂ e

where h* are the components of the matrix [hij]_l. So, using (1.11), (1.12) and (2.38),
the LB operator of a smooth function ¢ = ¢(z,y, z) can be written as

K3 < (ho2h33—ha3h3a2)pz+(hi13hza—hi2has)py+(hi12hes—hi3he2)p. )
ox

V/Idet[hi;]]
AH _ 1 _i_a@ (h23h31—h21h33)pz+(h11h3z—hi3h31)ey+(hi13ho1 —hi1he3)e. ,
|det[hy;]] Y V/Idet[hij]]
+9 (h21h32—hogh31)pz+(hi2ha1 —hi11h32)py+(hi1hoa—hi2ha1 )2
0z V/ldet[hj]|

(2.39)

where
det[hi;] = —hi3haohai+hi2hozhgy +hishaihsa —hi1haghss —hi2ho1haz+hi1hashss. (2.40)

Now, if we denote the LB!! operator of the rotational hypersurface (2.1) in Ef as AT,
then from (2.1) and (2.39), we get

AIIF — ((AIIF)17 (AIIF)Q, (AIIF>3, (AIIF)4)

1 ( (UI)I + (Vl)y + (W1)27 (U2):Jc + (‘/Q)y + (W2)za ) (2 41)
(Us)e + (Va)y + (W3)., (Us)e + (Va)y + (Wa). )’ ‘

|det[h;]|
where
Ui= Idet[h 0l ((ha2hss — hoshs2)(T'i)e + (hashsy — hiohss)(Ti)y + (hizhos — hagha2)(T)z) ,
ij
Vi= m ((hoghg1r — ho1hs3)(T'i)s + (hi1hag — highst) (I'i)y + (hizhotr — hithes)(I)2)
i = W ((ha1hg2 — haoh31)(Ts)e + (hi2har — hi1hs2)(Li)y + (hiithee — hi2ho1)(I1y).) -
ij
(2.42)
Here, taking i = 1,2, 3,4 and using (2.1), (2.7)-(2.9), we have
Ul _ zf cosh2ycoshz zf smhycoshy
‘/_f”\/? /_f//\/7 (243)
2 2 .
U3 _zf f’ cosh ysmhz _xf'%coshy .
/_ W /7f”m
Vi = _acf”sinhycoshycoshz’ Vo = — xf" cosh? y 7
\/_f,,m _pr1=f? "
__ zf"”sinhycoshysinh z _ (2 )
Vs = , Va=0
\/_f”m
and .
Wy = _w, Wy =0,
/7f//m
W3 — _ .Z’f” cosh z W4 _ 0. (2'45)

—f" /1_f/2
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Thus, using (2.43)-(2.45) in (2.41), we obtain the components of the LB operator of the
rotational hypersurface (2.1) as

(AT, = — @I7R-88%) =P Cf"—af ") (L)) coshy cosh

1 21f/f//2x/17f/2 )
(ATIT), = _ @f"@=8) = G =] ") (1) sy

2acf’f”2\/1—f’2 ’ (2 46)
(A[[F)S _ (Z‘f”2(2—3f’2)—f’(?f”—xf”')(l—f’Q)) cosh y sinh z :
20 f/ f112 \/l—f’2 ’
(AII]__‘)4 _ If”2(4*3fl2)+f,(2f”*£€f’”)(1*f’2)
21f"2\/1*f/2 )

where f(z) # ax +b, a,b € R and " = %. So, we can give the following theorem:

Theorem 2.11. The rotational hypersurface (2.1) about spacelike axis in Et is not LBY-
minimal.

Proof. We know that, a hypersurface I' is LB-minimal if it satisfies A//T" = 0. So,
the rotational hypersurface (2.1) in E{ is LB"-minimal, if all components of the LB
operator AUT vanishes, i.e. (AT);, i = 1,2,3,4, which have been obtained in (2.46)
vanish identically. Hence, the solution of (AY/T); = 0, i = 1,2,3, in (2.46) is obtained
with the Mathematica as

f(x) = /1x InverseFunct ng (#1 (2#12 - 1) V1—#1%2 4+ sin_l(#1)> &} [02 - ;cltg} dt+cs

and since this solution doesn’t satisfy (A/T")4 = 0 in (2.46), this hypersurface cannot be
LB"-minimal. O

2.4. The third Laplace-Beltrami operator on rotational hypersurface about
spacelike axis in E}

The third Laplace-Beltrami (LB™) operator of a smooth function ¢ = p(z!, 22, 23)|p,
(D C R?) of class C? with respect to the nondegenerate third fundamental form of hyper-
surface I' is the operator which is defined as follows:

1 3.0

D
—_— = |det[mi-]\m”.> , (2.47)
,/]det[mij]h;'::l Oz ( ’ Oz’

where m% are the components of the matrix (m;;)~!. Here, the matrix of third funda-
mental form, its inverse and the determinant are obtained by

AT, —

112

mi1 Mmi2 Mi3 1 - 0 0
[mij] = | m21 Mm22 Ma23 | = _Tf@ 0 f’2 0 ) (2.48)
m31 M3z M33 0 0 f?cosh?y
4. e IO
[m¥] = (=1 + f") 0 — o 0 (2.49)
1
0 0 " f2cosh?y
and
B f/4f//2 COSh2 y

det[mij] = (250)
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respectively. Here, m;; = <(Np)ui, (Np)uj>. So, using (1.11), (1.12) and (2.47) the LB
operator of a smooth function ¢ = ¢(z,y, z) can be written as

9 ( (ma2m33—ma3m32)pe+(mizmaa—miamas)py+(miamaez—mizmaz)p: )
ox

[det[m;]|
AT, — 8 [ (ma3m31 —ma1mas)@s+(mi1maz—mizma1)ey+(mizma1—miimas)e:
B Oy det[m;;
|det[m;]] V/Idet[m;]]
+@ (m21ma32—maam31)pz+(miamsi —mi1ma2)py+(miimoz—miameai)p.
0z V/det[m;]]
(2.51)
where
det[m;;] = —mizmaamsi+miamazma1+mi3ma1 Mz —m11Ma3M32—M12M21M33+1M11M22M33.
(2.52)

Now, if we denote the LB operator of the rotational hypersurface (2.1) in Ef as AT,
then from (2.51), we get

AIIIF _ ((AHIF)l, (AIIII-\)27 (AIIIF)?” (AIIIF)4)

_ 1 ( (M)z + (BV1)y + (W), (L) + (V2)y + (Wa)., > (2.53)
(Uz)z + (V3)y + (W3), (Ua)z + (Va)y + (W) )’ '

|det[m;;]|
where
8 = ((ma2mazz—mazm32)(I's)z+(m13maz—miam33)(T's)y+(miamaez—mizmaz) (1))
V/Idet[m;]| ’
V. — ((m23m31_m21m33)(Fi)m+(m11m33_m137£31)(Fi)y+(ml3m21_mllmZS)(Fi)z) (2 54)
! V/Idet[m;]| ’ )
2, — ((m21m32—m22m31)(Fz')x+(m127n31—m11m32)(Fi)y+(m11m22—m12m21)(f‘i)z)‘
‘ V/ldet[m;]|
Here, taking i = 1,2, 3,4 and using (2.1), (2.48)-(2.50), we have
Uy = 2 cosh%/ycoshz’ oy = 2 sinh,g{coshy7 -
L[g _ §72 cosl;j/ysinhz? S, = £13 ;;c(l)lshy; ( . )
0, = -2yt 1, - —segrs 250
m?) __zf smhly_v:}),SQhysmhz7 SU4 -0
and
_ f" sinh _
§Znl =-=Z 1_st/l2 Za Qn? - 07 (2 57)
N — __zf”coshz M, =0 :
3 1—f2 > 4 .

Thus, using (2.55)-(2.57) in (2.53), we obtain the components of the LB operator of the
rotational hypersurface (2.1) as

(AIIIF)l _ (1—f’2)((1—f’2)f'(2f”2—2f’/]/c;”)—21‘f”3)coshycoshz

(AI]IF)Q — _(1—f’2)((1_f/2)f/(2f//2/ ;g’f’”)—21‘f”3)sinhy

(ATIT)g = — ()2 G g 1) 20 7%) coshysinh = (2.58)
’ 14 £12)2(3 1172 /f:i(a,’)f”?’(x) ’

(AT, = _(=1+f )](wg —f'f )7

where f(x) # ax + b, a,b € R. So,
Theorem 2.12. The rotational hypersurface

D(z,y,2) = (:r cosh y cosh z, x sinh y, z cosh y sinh z, doy/2x + (d2)? + dg) , do,d3z € R

about spacelike axis in Ef is LB™ -minimal.
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Proof. We know that, a hypersurface I' is LB -minimal if it satisfies AT = 0. So,
the rotational hypersurface (2.1) in Ef is LB"-minimal, if all components of the LB
operator AT vanishes, i.e. (ATIT);, i = 1,2,3,4, which have been obtained in (2.58)
vanish identically. Hence, the solution of the differential equation

37 ()’ — /()" (&) = 0
f(z) =2z + dids + d3,

di,dy,d3 € R. If we use this function in the first three components of LB operator

AMIT | then for these components to be zero, it must be d; = (d2)? and this completes
the proof. O

is obtained as

3. Rotational hypersurfaces about timelike axis in E}

In this section, we find the rotational hypersurface about timelike axis according to the
Gaussian and mean curvatures in Ej and give some results for the Gauss map of this
hypersurface. Also, we study the LB and LB operators on the rotational hypersurface
with timelike axis in Ef and give some characterizations for LBY-minimality and LB"!-
minimality of this hypersurface.

3.1. Curvatures of rotational hypersurfaces about timelike axis in £}

For a differentiable function g(x) : I C R — R, the rotational hypersurface which is
obtained by rotating the profile curve 5(z) = (g(z), 0,0, z) about timelike axis (1,0,0,0)
is given by

1 0 0 0 g(x)
| 0 cosz —sinysinz —cosysinz 0
(z,y,2) = 0 O cosy —siny 0
0 sinz sinycosz COS Y COS 2 T
= (g(x), —z cosysin z, —zsin y, x cos y cos z) , (3.1)

where x € R — {0} and 0 < y,z < 2m.
With the aid of the first differentials of (3.1) with respect to z, y and z, the Gauss map
of the rotational hypersurface (3.1) is obtained from (1.4) by

1
Nr = ——= (1, —¢' cosysin z, —¢'siny, ¢’ cos y cos 2) (3:2)
77—

and from (3.2), we get

(Nr, Nr) = 1. (3.3)
Here, we state g = g(z) and ¢’ = d%f)_
Also, from (1.5), we obtain the matrix of the first fundamental form, its inverse and
determinant as

1-¢% 0 0
[gij] = 0 a:2 0 s (3.4)
0 0 x2cos’y
1
. 1—g" 0 0
[9"] 0 & 0 (3.5)
0 0 x2 c<1352 y

and
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respectively. From (1.6), the matrix form of the second fundamental form of the hyper-
surface (3.1), its inverse and determinant as

) g// 0 0
[hij]z—{ 0 zg 0 } (3.7)

9*=1 0 o xg' cos®y
—r 0 0
1
I I A ) (3.5)
0 T zg’cosZy
and 2 .02 1
22¢"2g" cos®y
det[h;;] = W’ (3.9)

respectively and here, we state ¢’ = dili(f). Hence, using (3.3), (3.6) and (3.9) in (1.8), we
can give the following theorem:

Theorem 3.1. The Gaussian curvature of the rotational hypersurface (3.1) is
12 1

g9
_ .
22 (g2~ 1)}
Here, we want to find the function g according to the Gaussian curvature K by solving

the equation (3.10). For solving the differential equation (3.10), let us put

/3
C=— 9 (3.11)

26 (g2 — 1)%/2
By differentiating (3.11) and using (3.10), we have

3K (x) + 623C
—

K = (3.10)

C'=— (3.12)

x
The solution of (3.12) which is a first order differential equation with respect to C' is
obtained by

O b 37 K(t)t? dt

- , (3.13)
c3 € R. From (3.11) and (3.13), we obtain that
1
t)t? dt)3
3 KO dl dz. (3.14)

==+ / ~
\/03—3f1 K02 de)s — 1
Hence, we can state the following theorem:

Theorem 3.2. The rotational hypersurface (3.1) about timelike axis in Ef can be parametrized
according to the Gaussian curvature by

1

-3 t)t? dt)

[(z,y,2) = / T E®) )2 dxr,—z cosysinz, —zsiny,rcosycosz |,
\/03—3f1 K(t)2dt): — 1

(3.15)
where c3 € R.

Example 3.3. If we take K(z) = %I and c3 = —e? in (3.15), then the rotational hyper-
surface is

I(z,y,2) = (— In (em +Ve2r — 1) , —X cosysin z, —x Sin y, T COS Y COS z) . (3.16)

In the following figures, one can see the projections of the rotational hypersurface (3.16) for
z = 2 into wox3xy, T1x3%4, T12224 and xjzoxs-spaces in (a), (b), (c¢) and (d), respectively.
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Figure 3

Also from Theorem 3.2, we can give the following results:

Corollary 3.4. The rotational hypersurface (3.1) about timelike axis in Ef with constant
Gaussian curvature (K =k € R) can be parametrized by

1

(c3+ k — ka3)3 . :

I(z,y,2) = ——dx, —rcosysinz, —rsiny, rcosycosz | .
\/03—1—14: ka3)s —1

Corollary 3.5. The rotational hypersurface (3.1) about timelike azis in E{ with zero
Gaussian curvature can be parametrized by

m(c;;)é
(c3)F — 1

Also, using (3.5) and (3.7) in (1.7), the shape operator of the rotational hypersurface
(3.1) is obtained by

, —X COS Yy sin 2, —x sin y, T cos y cos z) .

[(z,y,2) = (i

1

L[5 0 o
S:ﬁ 0o -2 (), ) (3.17)
0 0 4

T

So, from (1.9), (3.3) and (3.17), we get
Theorem 3.6. The mean curvature of the rotational hypersurface (3.1) is

2gl(1 _ g/2) +xg//

H = (3.18)
3 (g2 — 1)°/?
For solving the differential equation (3.18), let us take
/
p-_9@ (3.19)

/g2 —1
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By differentiating (3.19) and using (3.18), we have

3D +3H(x)
» :

D =— (3.20)

The solution of (3.20) which is a first order differential equation with respect to D is
obtained by

p_ 3 JEH@)E dt + ey

3

¢4 € R. From (3.19) and (3.21), we obtain that
=3 [FHt) 2 dt + ¢4

=z
V(=3 [2 H6)2 dt + cg)® — 2

: (3.21)

da. (3.22)

Thus, we can give the following theorem:

Theorem 3.7. The rotational hypersurface (3.1) about timelike axis in E} can be parametrized
according to the mean curvature by

-3 t)t2 dt
[Nz,y,z) = / S H(®) + e dx,—xcosysinz, —zsiny,x cosycosz |,
V(=3 [ HO)2 dt + cq)® — 2

(3.23)
where ¢4 € R.
Example 3.8. If we take H(z) = _M)mg—;ccsczx and ¢4 = cot(1) in (3.23), then the
rotational hypersurface is
(/3 s
[(z,y,2) = (arcsm(\\//_;sm ac),—x cosysin z, —x sin y, x cos y cos z) . (3.24)

In the following figures, one can see the projections of the rotational hypersurface (3.24) for
z = 2 into woxsxy, 12324, 12224 and xxox3-spaces in (a), (b), (c) and (d), respectively.

Figure 4
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3.2. Gauss map of the rotational hypersurface about timelike axis in E}

From (3.2), let us parametrize the Gauss map of the rotational hypersurface (3.1) about
timelike axis in Ef as

Tg(z,y,2) = T (1,—¢ cosysinz, —¢'siny, g’ cosy cos z) . (3.25)
Then, the normal of (3.25) is
Ng = _g’;—l (1,—¢' cosysin z, —¢'siny, g’ cosy cos ) (3.26)
and from (3.26), we have
(NG, Ng) = 1. (3.27)

From (1.5), we obtain the matrix of the first fundamental form, its inverse and deter-

minant as
12

—9°- 0 0
1 9/2_1
lgij]a = 771 0 g” 0 ; (3.28)
0 0 g¢?cos’y
_9;”—21 0 0
gle=("-1)| 0 5 0 (3.29)
0 0 -1
g/2 cos2 y
and g/4g//2 COS2 y
det([gi5la) = BT (3.30)

respectively. From (1.6), the matrix form of the second fundamental form of (3.25), its
inverse and determinant as

4 0 0
1 g”-1
[hijla = 721 0 g? 0 ) (3.31)
0 0 g?cos’y
e=(¢*-1)| 0 S 0 (3.32)
0 O g/2 cos2 y

and g/4g//2 COS2 y

det([hij)) = PR (3.33)

respectively. Hence, using (3.27), (3.30) and (3.33) in (1.8), we have
Theorem 3.9. The Gaussian curvature of (3.25) is
Ko =1. (3.34)
Also, using (3.29) and (3.31) in (1.7), the shape operator of (3.25) is obtained by

Sa =
0 01

100
01 0][. (3.35)

So, from (1.9), (3.27) and (3.35), we get
Theorem 3.10. The mean curvature of (3.25) is
Hg=1. (3.36)
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3.3. The second Laplace-Beltrami operator on rotational hypersurface
about timelike axis in E

Using the same procedure in subsection 2.3, we obtain the components U;, V; and W;
which are defined in (2.42) as

U = zg'? cosy Uy = — xg’ cos? ysin z
b )
—g"1/g"?—1 —g"\/9?2-1
_ xg'sinycosy _ g cos?ycosz . (337)
)
/_ g / 2 1 /7g//\/g/2771
Vi=0, Vo= xg'' siny cos y sin z
=0, = 29 ZYSSUSDE
,g// /9/2*1 3 38
Vi = — xzg' cos?y Vi = _xzg”sinycosycosz ( : )
=-——2 =7 = 29 S YR Yeon s
—g" /912_1 —g”\/g’Qi—l
and
Wi =0, W= — ALz
=0, = ,
_g// /9/2_1
W 0. W zg'' sin z (339)
3=V, 4 = T T

N

Thus, using (3.37)-(3.39) in (2.41), we obtain the components of the LB operator of the

) in
rotational hypersurface (3.1) as

IITy. _ zg"(4—39"*)+¢'(2¢" —zg"") (1—g"*)
(A F)l - ng//2\/g/2_1 )
(AT, = (zg'"?(2-39"%)—g' (29" —2g"") (1-g'%)) cos y sin z
nglg/& 9/2_1 ) (3 40)
(AT)3 = (zg"(2=39"*)—g' (29" —2g"") (1=g")) siny :
2zg’ g//z\/ 2_q )
(ATIT), = _ (2g"(2=3¢"*)—g' (29" —xg"")(1—g'?)) cos y cos z

QZg’g”z \/g/2 1

where g(z) # ax + b, a,b € R and ¢" = %. So, from the proof of the Theorem 2.11,
we can state the following theorem:

Theorem 3.11. The rotational hypersurface (3.1) about timelike azis in E{ is not LB!-
manimal.

3.4. The third Laplace-Beltrami operator on rotational hypersurface about
timelike axis in E}

The matrix of third fundamental form, its inverse and the determinant are obtained by

g
1 1 0 0
[mi;] = 721 0 g2 0 ) (3.41)
0 0 g?cos’y
00
g//
ml=¢*-1)| 0 S 0 (3.42)
0 0 -1
g/2 cos2 y
and
9/491/2 COS2 y

det[mij] (343)

(g% =1t~
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respectively. Using the same procedure in subsection 2.4, we obtain the components Ll;,
0, and 2U; which are defined in (2.54) as

_ g"3cos _ g?cos?ysinz
9y . g ’ (3.44)
'2 sin y cos "2 cos? y cos z :
fly — — Psngoosy | o cos yeosz,
"o .
By = 0, 2, = — o sy .
_ xg" cos? _ xg"sinycosycosz ( : )
W, — 29" cos’y g3 _ ag”sinycosycosz
3 g2—1 4 g?—1
and
zg" cosz
wl = 07 QUQ = g/2_1 ) 3.46
Wy =0, W, = “0snz (3.46)
3 =Y, 4= g2—1 °

Thus, using (3.44)-(3.46) in (2.53), we obtain the components of the LB operator of the
rotational hypersurface (3.1) as

/2_1 2 -3 //2+ 111
(AHIF)IZ(Q )%( 39" +4'g )7
III . (9/2_1) g/(1_9/2)(2g//2_g/g///)_2xg//3 cosy sin z
(A F)Z — 72 173 ’ ( 47)
; 3.
(9/271) g’(lfg’Q)(29”279’g”’)72xg”3 siny
(AIIIF)3 = - ( 72 173 ) ;
111 (92-1)(g'(1-9"*) (29" —g'g"")—22g""?) cos y cos z
(A ]'_‘)4 = 9'29”3 9

where g(z) # az + b, a,b € R. So, from the proof of the Theorem 2.12, we can state the
following theorem:

Theorem 3.12. The rotational hypersurface
[(z,y,2) = (d4 2z + (dg)? 4+ ds, —x cos y sin z, —x sin y, x oS Y coS z) , dg,ds € R
about timelike axis in FEf is LB™ -minimal.

4. Rotational hypersurfaces about lightlike axis in E}

In this section, we give some results for the Gaussian and mean curvatures of a rotational
hypersurface with lightlike axis and this hypersurface’s Gauss map. Also, we study the
LB and LB™ operators on the rotational hypersurface with lightlike axis in E{ and give
some characterizations for LB-minimality and LB™-minimality of this hypersurface.

4.1. Curvatures of rotational hypersurfaces about lightlike axis in F}

For a differentiable function h(z) : I C R — R, the rotational hypersurface which is
obtained by rotating the profile curve v(z) = (z, h(x),0,0) about lightlike axis (1,1,0,0)
is given by

y2_£z2 + 1 _y2—é_’z2 y 5 .
2_,’_ 2 + 2
I(z,y,2) = = 1-45%= y =2 h(z)
Y —y 10 0
z -2 0 1 0
2 2 2 2 2 2 2 2
(e B ),
xy — h(x)y,zz — h(x)z

where z € R — {0}.

In the following figures, one can see the projections of the rotational hypersurface (4.1)
for h(z) = sinx and z = 2 into wex3xy, T1T324, T12224 and xjxox3-spaces in (a), (b), (c)
and (d), respectively.
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Figure 5

With the aid of the first differentials of (4.1) with respect to z, y and z, the Gauss map
of the rotational hypersurface (4.1) is obtained by

(P + 22— (PP + 22+ 2) 0,2+ 22 —2— (Y2 +22) 0,2y (1 — K),22 (1 — 1))

N =
' 2v/1— 1
(4.2)
and from (4.2), we get
(Np, Np) = 1. (4.3)

dh(z)

Here, we state h = h(x) and b/ =
Also, from (1.5), we obtain the matrix of the first fundamental form, its inverse and
determinant as

h? -1 0 0
[9i5] = 0 (z — h)? 0 , (4.4)
0 0 (x — h)?
1
. w1 Y 0
[9”] = U P K (1) (4.5)
0 0 @on?
and
det[gij] = (x — h)* (h’2 — 1) , (4.6)

respectively. From (1.6), the matrix form of the second fundamental form of the hyper-
surface (4.1), its inverse and determinant as

. —h 0 0
VI=R2] 0 (z — h)(W — 1)
— 7 0 0
h)=V1i-02| 0  Gomwo (1) (4.8)
0

0 @R -1)
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and

(x — h)* V1 — h2h"
(1+h)?

respectively and here, we state h'” = %. Hence, using (4.3), (4.6) and (4.9) in (1.8), we

can give the following theorem:

det[hij] = — P (4'9)

Theorem 4.1. The Gaussian curvature of the rotational hypersurface (4.1) is

h//
R ey Viome (4.10)

From (4.10), we have

Corollary 4.2. The rotational hypersurface (4.1) is flat if and only if h(x) = ax + b,
aceR—-{-1,1}, beR.

Also, using (4.5) and (4.7) in (1.7), the shape operator of the rotational hypersurface
(4.1) is obtained by

hll
L — 0 =L . 411
e (4.11)
x—h

So, from (1.9), (4.3) and (4.11), we get

Theorem 4.3. The mean curvature of the rotational hypersurface (4.1) is
2(1 = W) (=1 + N — h)h"
=2 )1+ )+(‘§2 ) (4.12)
3(z — h) (1 — h2)%

If the rotational hypersurface (4.1) in Ef is minimal, then from (4.12) it must be

2(h —1)(1 — h*) + (z — h)R" = 0. (4.13)
Here, by taking p(z) = h(z) — z in (4.13), we get
2p”(p' +2) +pp” = 0. (4.14)

If we take p/(z) = f(z), then we get
df

p=y=1 (4.15)
and by using (4.15) in (4.14), we have
dp daf
_ 7 4.16
p o 2f(f+2) (4.16)
where p # 0 # f(f 4+ 2). By integrating (4.16), we get
1 f
—In(p) = 1 (111 <2+f>) —1In(a), (4.17)
a € RT and so A
9 (a
f= (p) . (4.18)
N4
1= ()
Since f =p' = %, from (4.18) we have
4
1—(a
(]'?ldp =dx (4.19)
2(3)
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and by integrating (4.19), we reach that
p° — 5a’p = 10a*(x + b), (4.20)
b € R. Finally using p(z) = h(x) — x in (4.20), we obtain the equation (h — x)° — 5a*h =
5a(x 4 2b).
Conversely, if h satisfies the equation (h—z)° —5a*h = 5a*(x+2b), then (4.12) vanishes.
Thus, we can state the following theorem:

Theorem 4.4. The rotational hypersurface (4.1) in Ef is minimal if and only if h(x)
satisfies the equation

(h — z)° — 5a*h = 5a*(z + 2b), (4.21)
ac Rt beR.

4.2. Gauss map of the rotational hypersurface about lightlike axis in £}

From (4.2), let us parametrize the Gauss map of the rotational hypersurface about
lightlike axis in Ef as
(2 + 22— (PP +22+2) 0,2+ 22 —2— (P +22) B, 2y (1 = 1), 22 (1 — 1))
2v/1 — h72 ‘

FG(«T, Y, Z) =

(4.22)
Then, the normal of (4.22) is

(=" =22+ WP+ 2+, -y =22+ (PP + 22 W, 2y(W = 1),22 (W - 1))

N pr—
¢ 2v/1 — h’2
(4.23)
and from (4.23), we have
(Ng,Ng) = 1. (4.24)

From (1.5), we obtain the matrix of the first fundamental form, its inverse and deter-
minant as

h//2
RGN
lgij]la = 0 o 10h/ : (4.25)
0 0 ow
) N
[9"]c = 0 b=t 10h (4.26)
+ /
0 0 =
and
h//2

respectively. From (1.6), the matrix form of the second fundamental form of (4.22), its
inverse and determinant as

B (h/2//21)2 0 0
[hZ]]G = — 0 %”;j}l lg_h, s (4.28)
0 0 e
[ 00
[h)a = 0 L (4.29)
1+h'
L 0 0 li_h/
and
h//2
det([hij]c) = (4.30)
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respectively. Hence, using (4.24), (4.27) and (4.30) in (1.8), we can give the following
theorem:

Theorem 4.5. The Gaussian curvature of (4.22) is
Kg = 1. (4.31)

Also, using (4.26) and (4.28) in (1.7), the shape operator of (4.22) is obtained by

Sg =

100
01 0]|. (4.32)
001

So, from (1.9), (4.24) and (4.32), we get
Theorem 4.6. The mean curvature of (4.22) is

Hg=1. (4.33)

4.3. The second Laplace-Beltrami operator on rotational hypersurface
about lightlike axis in B}

Using the same procedure in subsection 2.3, we obtain the components U;, V; and W;
which are defined in (2.42) as

Uy = @i DP9 P 2W) ) (hee) (P2 =y =)
2 oWV VIR ’ (4.34)
y(h—z)(1-h')* h')? U z(h—z)(1-h")*

A —h!"\/1— h/2 1/7}#/@’

Vi = _y(h—z)n" Ve = __y(h—z)h"”
_h” 1//hl —h""V1- h, (435)
_hnm
and
Wy — _ z(z—h)h" _ __z(z—h)h"
1 / —h!\/1— h/ h)2h” A/ — h!'\/1— hl (436)
Wy =0, Wy = —— L=’
s YA e

Thus, using (4.34)-(4.36) in (2.41), we obtain the components of the LB operator of the
rotational hypersurface (4.1) as

—2(h = 1)2(W + 1)((y? + 220 — y? — 22 = 2)n"
+(z — h)(—4(y* + 2* — 1) + (y* + 22 + 6)h' + 3(y* + 2*)h*)n'"?
(AHF) _ —(1‘ — h)((y2 + ZQ)h/ - y2 - Z2 — 2)(h/2 — 1)hm
1= A(z—h)VI—I2R" ’
—2(W = 120+ (5 + 22— 2 — 3 — )
+(z — h)(—4(y? + 22 = 3) + (y? + 22 + )R’ + 3(y? + 22 — 2)h'2)h"?
(AT), — (= WP + 22— 2N~y = ) — D"
2= 4(z—h)V1—h"2h'"2 ’
(ATIT), = y(=1+h") 2R =1)* (W +1)h" —(z—h) (3K’ +4)h"?+(x—h) (h"2—1)h"")
3= 2(z—h)VI—hZh"2 ’
(A1), = 2(=14h")(2(0 =1)2 (W' +1)h" = (z—h) (3h'+4)h/*+(x—h) (/> =1)h")
4= 2(z—h)VI—h2R" )

(4.37)

where h(x) # az +b, a,b € R and b = d*h(z)

da3
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4.4. The third Laplace-Beltrami operator on rotational hypersurface about
lightlike axis in E}

The matrix of third fundamental form, its inverse and the determinant are obtained by

h//2

—m O / O

1_ /
0 R

[ 00

[m"] = 0 L0 (4.39)
0 0
and
h//2

respectively. Using the same procedure in subsection 2.4, we obtain the components 4;,
0, and 20; which are defined in (2.54) as

gy = UPP@P 4242 (P 4)h) g (=) (P e’ (e’ — )W)
" y(1—h')3 ﬂQh// (1py? ) 2h ) (441)
3 = 7 5 4 = R 5
ml — y(i;h){ﬂ’) m2 _ y(}xl/;h)lh//7
. ((I;_h)_h” . - (4.42)
Vs = TG Va=0
and
_ z(x—h)h” _ z(z—h)h”
wl == 2/2_1 y wi;ﬂ%? } (443)
Wy =0, W, = LT

Thus, using (4.41)-(4.43) in (2.53), we obtain the components of the LB!! operator of the
rotational hypersurface (4.1) as

(14 R)2(—(W — 1)2(W + 1)(3(y? + 22 — 3y? — 322 — 4)h"
11 +4(x = R)A" + (W =13 +1)((y* + 22’ —y* — 2° = 2)h")
(AT ) = - 2(h2—1)W'73 ’
(1+h)2(=(W — 12 + 1)(3(y? + 2% — 2)h' — 3y? — 322 + 2)h"?
+d4(x — h)AB + (B = 13N +1)((y? + 22 = 2)h — % — 22)n")

111 —
(A F)2 - 2(h2—1)h'"3 5
(ATIT), = _y(h/2_1)2(—3h”32+(h’—1)h”’)
h 5
12 _1\2(_ap!2 ’_ "
(AT, = _z(R2=1)%( 3}3/3 +HW D)
(4.44)
where h(x) # ax + b, a,b € R. So,
Theorem 4.7. The rotational hypersurface
2+ 2 2+ 2 2$d672\/72d6(m+d7)71
(yQZ +1>$_y2z( 2ds );
I(w,y,z) = By 4 (1- L2 ) (e Rl . dg,d7 € R
2xde—24/—2dg (x+d7)—1 2xds—2+/—2dg(x+dr)—1
2y — (&= 2d66(r 2 )y, w2z — (7 2d66(x : )z

about lightlike axis in E is LB -minimal.
Proof. The solution of the differential equation

_3h1/2 + (h/ _ 1)hll/ — O
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is obtained as

xdg — \/—2dg(z + d
h(z) = =2 - ol +dv) | ds, dg,d7,ds € R.
6
If we use this function in the first two components of LB operator AIT", then for
these components to be zero, it must be dg = ;72. So, the proof completes. U

Here, we must note that the Gaussian and mean curvatures, which are given for the
rotational hypersurfaces in this study, can be obtained by taking a = b =0 in [11].
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