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0z
Donel yiizeylerin sekillerinin ayarlanmasinda geometrik tasarimin istenilen sekilde olmasi i¢in, ilk olarak iki yerel sekil parametreli
kubik Hermityan ve kiibik Bezier egrileri kullanilarak donel ylizeyler olusturuldu. Olusturulan bu yeni donel yuzeylerin, yerel sekil
parametrelerinin degistirilmesi ile yuzeylerin sekillerinin ayarlanmasi konusunda iyi bir performansa sahip oldugu goriildii. Ayrica,
kibik Hermityan ve kiibik Bezier egrileri tarafindan olusturulan donel yiizeyler, ilgi ¢ekici ylizeylerin tasarimi i¢in degerli bir yol

saglamaktadir. Bu baglamda, bu donel yizeylerin ortalama ve Gauss egrilikleri elde edilerek, bu yiizeyler igin bazi
karakterizasyonlar verildi.

Anahtar Kelimeler: Hermityen egrileri, bezier egrileri, donel yuzeyler, sekil parametresi.

Rotational Surfaces Generated by Cubic Hermitian and
Cubic Bezier Curves

ABSTRACT

To tackle the geometric design in adjusting shapes of rotation surfaces, firstly the rotation surfaces have been constructed by using
cubic Hermitian and cubic Bezier curves with two local shape parameters. It has been seen that, the new rotational surfaces which
have been constructed have a good performance on adjusting their shapes by changing the local shape parameters. Also, the
rotational surfaces generated by cubic Hermitian and cubic Bezier curves have provided a valuable way for the design of interesting
surfaces. In this context, some characterizations have been given for these rotational surfaces obtaining the mean and Gaussian
curvatures of them.

Keywords: Hermitian curves, bezier curves, rotational surfaces, shape parameter.

1. INTRODUCTION symmetrical lampshade in [9]. So, by using this work we

design and engineering as well as being an important ~ three steps as follows:

branch of mathematics. In recent years, many authors i. Recalling cubic Hermitian and cubic Bezier curves;
such as G. Farin, J. Hoschek and A. Saxena have worked jj rotating cubic Hermitian curve and cubic Bezier
[5,6,10]. The most important of these curves are the designs;

Hermitian curves, Ferguson curves, Bezier curves and
etc. The De Casteljau algorithm has shown that, Bezier
curves are written as linear combinations of Bernstein
polynomials (for detail about these curves, see [6,9,10]).
Also, the geometry of surfaces such as, rotational ~Consequently, the aim of this study is modelling some
surfaces, ruled surfaces, rational Bezier surfaces, rational ~ industrial objects by constructing and rotating cubic
B-spline surfaces, non-uniform rational B-spline  Hermitian and cubic Bezier curves and also giving new
surfaces, discrete surfaces and etc. have been studied by  ideas for producers about object modelling industry.
geometers and engineers widely in Euclidean space,

Minkowski space, Galilean space, pseudo-Galilean space 2. PRELIMINARIES

and etc [1,2,3,4,5,7,8]. A cubic Hermitian curve is a cubic polinomial curve
For example, E. Octafiatiningsih and I. Sujarwo have  segment constrained to a given position p and a tangent
used Quadratic Bezier curve on rotational and vector v at each endpoints.

iii. giving some characterizations for these rotational
surfaces obtaining the mean and Gaussian curvatures
of them.

*Sorumlu Yazar (Corresponding Author)
e-posta : gunduz.hagan@hotmail.com
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Figure 1. Cubic Hermitian curve created with two control
points and two tangent segments

First, we’ll recall the parametric expression of a cubic
Hermitian curve [6,10].

A parametric cubic curve P(u) in Euclidean 3-space is
defined as P(u) = (x(u), y(u), z(u)), where

x(u) = a, + byu + c,u? + dud,

y@) = a, + byu + cyu® + dyu’, (@))
z(u) = a, + bu + c,u® + d,us,

with parameters bounded in intervals 0 < u < 1. Then,
We can write it as

Pw) = (x(w),yw),z(w)) = a + bu + cu? + du®. (2)
Then, foru = 0 and u = 1, we have

P(u=0)=aq,
Plu=1)=a+b+c+d, 3)
P'(u=0)=b,

P(u=1)=b+2c+3d

with a,, b,, ¢, and d,, are algebraic scalar coefficients.

e
e

e

Figure 2. Control points and tangent segments of cubic
Hermitian curve foru =0andu =1

If the system (3) is solved, then the values of the vectors
a, b, c and d are obtained by

a = P(0),

b = P'(0), @)
c = —3P(0) + 3P(1) — 2P'(0) — P'(1),

d = 2P(0) — 2P(1) + P'(0) + P '(1).

If we use the equations (4) in (2), then the Hermitian
curve is obtained as:

P(W) = P(O)H, (w) + P(DH, (W) + P'(0)H; (w) + P'(DH, ), (5)

where H, (u), H,(u), H;(u) and H,(u) are the base
functions (or blending functions) of Hermitian curve
given by

Hy(u) =1 —3u? + 2u5,

H,(u) = 3u? — 2u3, 6)
Hy(u) = u —2u? + u3,

H,(uw) = —u?+us

and P(0), P(1), P'(0) and P'(1) are geometric
coefficients.

06} — H
H
Hs
— Hi

04 06 08 10

=02+

Figure 3. Hermitian blending functions

For the blending functions of Hermitian curve we have
the following:

Atu=0andu =1, we get

H; =1,H, = H; = H, = 0; P(0) = P,,

Hj =Hjy=H, =0,H; =1;P'(0) =T,

and

Hy=H3; =H,=0,H,=1P(1) =Py,

Hi =Hy=H;=0,H,=1P'(1) =T,

respectively. This gives us the endpoints and tangent
vectors at endpoints by using blending functions.

Also, by putting the blending functions we can give the
matrix form of cubic Hermitian curves as follows:

H = [H;(w), Hy(u), H3(w), Hy(u)]

2-2 11

e -3 3-2-1|_

= [u® u* u 1] 00 10 UMy, ©)
1 0 0 O

where My is called the Hermitian characteristic matrix.
Collecting the Hermitian geometric coefficients into a
geometric vector B, we have a matrix formulation for the
Hermitian curve P(u) as
P(u) = UMyB, (8)
where

[ P(0) 1
5| PO |

[ P'(0) |

P'(1)

My, transforms geometric coordinates from the Hermitian
bases to the algebraic coefficients of the monomial bases.
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Next, let us recall some notations about the cubic Bezier
curve [6,10].

n-th degree of Bezier curve is defined as (n+1) control
points’ weighted linear combination using Bernstein
polynomials. A Bezier curve can be expressed by

Pw) =YY", —w) P, =Y BMwP, 0 <u<1,

where B['(u) is called Bernstein polynomials. More
specifically, we can examine the behavior of Bezier curve
for 3rd degree polynomials as follows:

Let P(u) be the cubic Bezier curve lying on xz-plane. It
has 4 control points P; (i = 0,1,2,3) and four base
functions f;(uw) (i = 0,1, 2, 3) with parameters bounded
in intervals 0 <u <1. Then we can write it as

3
P = ) fiP, = fo(WPo + fiGOP: +f,GPs+f; Py
i=0

with the base functions
fow) =1—3u+3u?—ud,

fiw) = 3u — 6u? + 3ud, 9)
fo(w) = 3u? — 3u’,
fs(w) = .
1\\
sl \
IR
[ \ —
08 1 B
[ N f

Figure 4. Cubic Bezier Base Functions

Also, according to the base functions, we can give the
matrix form of cubic Bezier curve as follows:

B = [fi(w), LW, fs(w), fa(W)]

-1 3-31
3—-6 3 0

= [u?® u? u 1] 33 00l7 UMp, (10)
1 0 0O

where Mg is called the Bezier matrix.

Collecting the Bezier geometric coefficients into a
geometric vector G which is defined by the user, is an
array of data points. Here, we have a matrix formulation
for the Bezier curve P(u) as
P(u) = UMBG,

where

(11)

Note that the curve does not pass through the points
P; and P,. In cubic Bezier segments, in order to change
the curve’s shape we may relocate any of control points
Py, P;, P,or P;. We also know that, for Hermitian

segments, we have to specify end slopes for a particular
shape and this situation is difficult for researchers.
Furthermore, Bezier curve is easier to specify the shape
of control polyline than Hermitian curve.

For more details about Hermitian and Bezier curves, we
refer to [6,9,10].

Now, let us investigate the rotational surfaces according
to the axes of rotation in E3.

Rotation is the change of an object coordinates into the
new position by moving the whole coordinate points
defined in the initial form with an angle about an axis of
rotation. The coordinate system E3 has three rotation
axes. First suppose that the axis of rotation is the z-axis.

Let A be a 3 x 3 regular matrix and 0 # £ € E® be a
vector. If A satisfies the following conditions, then it is
said that A denotes a rotation in positive direction

i AS =4,
ii.  AlA* =1,
iii. detA=1,

where [ is the 3 X 3 unit matrix.

From this definition, it can be seen that the rotation
matrix which fixes the z-axis is the set of 3 x 3 matrices
defined by

cosv —sinv 0
A(w) =|sinv cosv O0f, veER
0 0 1

Then, by rotating the curve

a(u) = (a(w), ay(w), az(u)) about the z-axis, the
rotational surface M can be parametrized by

Y(u,v) = (a(u) cosv — a,(u) sinv, a; (u) sinv
(12)

By rotating the curve a about the x-axis and y-axis, one
can write the rotational surfaces similarly.

+a,(u) cos v, az(u)).

3. CONSTRUCTION OF ROTATIONAL
SURFACES GENERATED BY CUBIC
HERMITIAN CURVE

In this section, we’ll construct the rotational surface
generated by cubic Hermitian curve by using the
structure of a tube deformation.

Suppose given a tube of radius r, where r € [a, b], i.e.
the minimum radius of the tube is a and the maximum of
the radius is b. Also, let we define the height of the tube
as h, where h € [c,d], i.e. the minimum height of the
tube is ¢ while the maximum of the radius is d. The
selection of the value of r and h in the interval aims to
differences in size of shape components of geometric
design.

Firstly, we determine a center point on the tube base
circle (x4,v4,2,) = (0,0,0). Then, for this center point
and v = 0 the tube base circle using the circle equation
is built and the point P(0) is given by

(xy + 1 cosv,y; + 1y sinv,z;) = (1,0,0). (13)
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Also, let the center point on the tube roof circle be
(%1,¥1,2,) = (0,0,h). Then, for v =0, we can build
tube roof circle using the circle equation and obtain the
point, namely P(1) as

(x, + 1y co05V,y; + 1y 5inv,2;) = (15,0, h). (14)

Then, for controlling the curvatures of the Hermitian
curve, we can determine the control points P'(0) and
P'(1) as follows:

P'(0) = (x,0,0) (15)
and
P'(1) = (x,0,2), (16)

where —2r < x,z < 2hand x,z € R.

C r P(1)=(r,0,h)
P'(1)=(x,0,2)
=
X
— R(0=(7,0,0) P'(0)=(x,0,0)

y

Figure 5. Representation of a tube deformation for Hermitian
curve

Further by using (13)-(16) in the equation P(u) =
P(0)H; (W) + P(1)H,(w) + P'(0)H3(w) + P'(DH,(w),
the Hermitian curve is obtained by

P(u) = (ryHy (W) + ryHy (w) + xHs (w) +
xH,(u), 0, hH,(u) + zH4(u)), 0<su<1 (17)

with the blending functions (6).

3.1. Some Characterizations of Rotational Surfaces
Generated By Cubic Hermitian Curve

In this subsection, firstly we’ll give some examples for
rotational surface generated by cubic Hermitian curve by
obtaining the parametric expression of'it. Also, we’ll give
some characterizations for it with the aid of the mean and
Gaussian curvatures.

By rotating the Hermitian curve (17) around z-axis, we
get the rotational surface as

P(u,v) = ([r,(1 — 3u? + 2u3) + r,(3u? — 2u?)
+ x(u — 3u? + 2u®)] cos v,

[rn(1 —3u? + 2u®) + r,(3u? — 2u?)
+ x(u — 3u? + 2u®)] sinv,

hBu? — 2u®) + z(—u? + u®)). (18)

In the following figures, one can see the rotational surface
(18) forx = 100, h = 15, z = 150 and diff erent radius
r, and ry:

(A) ry =20,r, =10 (B) , =10,1, =20

Cnrn=r=20

D) rn=r=10
Figure 6. Rotational surface (18) for diff erent radius

Now, by takingr, =7, = rin (18), we can write the
rotational surface generated by cubic Hermitian curve
as
P(u,v) = ([r + x(u — 3u? + 2u®)] cos v,

[r + x(u — 3u? + 2u®)] sinv,

h(Bu? — 2u®) + z(—u? + u®)). (19)
In the following figures, one can see the Hermitian curve

and rotational surface (19) generated by this cubic
Hermitian curve for r = 10, x = 300,h = 15,z = 400:

(A) Hermitian curve
Figure 7. Hermitian curve and rotational surface (19)

(B) Rotational surface

The coefficients of the first and second fundamental
forms of the rotational surface (19) are obtained as

E = x*(1 — 6u + 6u?)?
+[6hu(1l —u) + zu(—2 + 3uw)]?,

F=0, (20)
G =[r+x(u—3u?+2u®))?
and
L—Z—x[3h(1—2 )—z(1—3u+3u?)]
=7 u) —z u +3u?)],
M=o, @1)
Nzi[r+x(u—3u2+2u3)]><
VD

[6hu(1 —u) + zu(—2 + 3u)],
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respectively. Here, the unit normal of the surface is

N(u,v) = \/%(—[6hu(1 —u) + zu(—2 + 3u)] cos v,
—[6hu(1l — w) + zu(—2 + 3u)] sinv,
x(1 — 6u + 6u?))

and

D = [6hu(1l — u) + zu(—2 + 3u)]?

+x2(1 — 6u + 6u?)>.
So, we can give the following Theorem:
Theorem 1. The mean curvature and Gaussian curvature
of the rotational surface (19) are

2x[r + x(u -3 + 2u3)] X
[3r(1 — 2u) — z(1 — 3u+3u?) ] +
[x2(1 —6u + 6u2)2 + [6hu(1 - u) + zu(—Z + 3u)]2] X

H = [6hu(1 = u) + zu(—=2 + 3u)]

2L (1 — 6u + 62)? + [ohu(1 — w) + zu(=2 + 30) ] x
[r + x(u — 3u? + 2u3)]

and (22)

2x[3h(1 = 2u) — z(1 — 3u + 3u?) | x

_ [6hu(1 —u) + zu(-2 + 3u)]

T [2(1 - 6u + 6u2)? + [6hu(1 — u) + zu(—2 + 3u) 2] X’

[r + x(u = 3u? + 2ud)]

(23)
respectively.
The following figures show the Gaussian and mean
curvatures functions’ graphics of the rotational surface
(19) forr =10, x =300, h =15, z =400 and the
variations of Gaussian and mean curvatures on this
surface:

(A) Gaussian curvature (B) Mean curvature

function’s graphic function’s graphic

(C) Variation of Gaussian
curvature on surface

(D) Variation of mean curvature
on surface

Figure 8. Gaussian and mean curvatures’ graphics and the
variations of Gaussian and mean curvatures on
surface

Now, let us take z = 2h in the equations (19)-(23). Then,
we have
P(u,v) = ([r + x(u — 3u? + 2u®)] cos v,

[r + x(u — 3u? + 2u®)] sinv, hu?). (24)

In the following figures, one can see the Hermitian curve
and rotational surface (24) generated by this cubic
Hermitian curve forr =1, x =20, h =5, z = 10:

(4) Hermitian curve (B) Rotational surface
Figure 9. Hermitian curve and rotational surface (24)
Also, for (24)

E = x?(1 — 6u + 6u?)? + 4h%u? F =0,

G =[r+x(u —3u?+2u®)]? (25)
and
L= _eur), M=o
= — —_ u B = ,
VD
_ 2hu _ 2.2 3
N = \/B[r+x(u 3u” + 2u?)]. (26)

Theorem 2. The mean curvature and Gaussian curvature
of the rotational surface (24) are

h{x(l - 6u2)[r + x(u —3u’ + 2u3)]} +

H hu[x2(1 —6u+ 6112)2 + 4h2u2]

[x*(1 — 6u + 6ud)® + 4h2u2];[r + x(u - 3u? + 23)]
and 27)
4h2xu(1 - 6u®)
[x2(1 — 6u + 6u?)® + 4h22)2[r + x(u — 3u? + 2u®)]’
(28)

K =

respectively.

The following figures show the Gaussian and mean
curvatures functions’ graphics of the rotational surface
(24) for r=1,x=20, h=5 z=10 and the
variations of Gaussian and mean curvatures on this
surface:

4

(A) Gaussian curvature’s (B) Mean curvature’s

graphic graphic

(C) Variation of Gaussian
curvature on surface

(D) Variation of mean

curvature on surface

Figure 10. Gaussian and mean curvatures’ graphics and the
variations of Gaussian and mean curvatures on surface
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Now, from (27) and (28) we can give the following
characterizations:

Corollary 1. Let M be the rotational surface (24) which
is generated by cubic Hermitian curve.

i Then, the mean curvature of surface cannot
vanish at the initial point of the Hermite curve.

ii. Then, the mean curvature of surface vanishes at
the ending point of the Hermite curve if and only
if the equation 5hrx = x2 + 4h? holds.

iii. If the mean curvature of surface vanishes at the
ending point of the Hermite curve, then the
control point of P'(1) cannot be on the z-axis or
the control point of P'(0) cannot be on the origin.

Corollary 2. Let M be the rotational surface (24) which
is generated by cubic Hermitian curve. Then, the
Gaussian curvature of surface

i.  vanishes at the initial point of the Hermite curve;
ii.  vanishes on the parametric curve P(%, v) of M;

iii.  vanishes, if the control point of P'(1) is on the z-
axis or the control point of P'(0) is on the origin.

4. CONSTRUCTION OF ROTATIONAL
SURFACES GENERATED BY CUBIC BEZIER
CURVE

In this section, we’ll construct the rotational surface
generated by cubic Bezier curve by using the structure of
a tube deformation.

Suppose given a tube of radius r; and r,, where
7,7 € [a,b]. Also, let we define the height of the
tube as h, where h € [c,d]. The selection of the value
of r;,r, and hin the interval aims to diff erences in size
of shape components of geometric design.

Firstly, we determine a center (initial) point on the tube
base circle (x,y1,2;) = (0,0,0). Then, for this center
(initial) point and v = 0 the tube base circle using the
circle equation is built and the point P, is given by

Py = (%, + 1, cosv,y; + 1y sinv, z;) = (11,0,0). (29)
Also, let the center (ending) point on the tube roof circle
be (x1,v1,2,) = (0,0, h). Then, for v = 0, we can build
tube roof circle using the circle equation and obtain the
point, namely P; as

Py = (xy + r,cosv,y; + 1psinv,z;) = (1,,0,h). (30)
Then, the other two control points P, and P, of the cubic
Bezier curve can be defined as follows:

Py = (%1,0,2) (31)
and
P, = (x,0,2,). (32)

P2=(r2,0.h)
[
Pz=(x2,0.z2)
—_——
P1=(x1,0.z1)
[ ——— X

Po=(r1,0,0)

Y

Figure 11. Representation of a tube deformation for Bezier
curve

Further by using (29)-(32) in the equation

P(u) = fo)Py + (WP + fL()P, + f3(w)Ps,
the Bezier curve is obtained by

P(u) = (rfo(w) + x1fi(w) + x22(w) + 15f3(w), 0,
zi1fi(w) + z,f,(W) + hfs(W),0<u<1 (33)
with the base functions (9).
4.1. Some Characterizations of Rotational Surfaces
Generated By Cubic Bezier Curve

In this subsection, firstly we’ll give some examples for
rotational surface generated by cubic Bezier curve by
obtaining the parametric expression of it. Also, we’ll give
some characterizations for it with the aid of the mean and
Gaussian curvatures.
By rotating the Bezier curve (33) around z-axis, we get
the rotational surface P(u,v) with two local shape
parameters as
([ry(1 = 3u + 3u? — u3) + x;(Bu — 6u? + 3u?)

+ x,(3u? — 3u®) + Lu3] cos v,

[r,(1 —3u+ 3u? —u®) + x,(Bu — 6u? + 3u?)
+ x,(3u? — 3u®) + u3] sinv,

z,(3u — 6u? + 3u3) + z,(3u? — 3u®) + udh). (34)

In the Figure 12, one can see the rotational surface (34)
for diff erent values of ry, 1y, x4, x5, 2y, z, and h which
have been choosed as following, respectively:
MADrn=2r1r,=02x =5 x=10, 2z, =10, z, =2 and
h =0.1;

B)ri=1r=2x=10, x, =5, z =25, z, = 10 and
h=1;

C)rn=17r=2 x%=20x,=52,=20,2z,=5 and
h = 20;

(D)ry=1,1,=2, x; =50, x, = 35,2, = 40, z, = 25
and h = 90.
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w ®)

© ) (D)

Figure 12. Rotational surface (34) for different values of
Ty, T, X1, X2, Z1, Zz and h

The first derivative of the surface (34) with respect to u
and v are

B,(u,v) = ([, (-3 + 6u — 3u?) + x,(3 — 12u + 9u?)
+ x,(6u — 9u?) + 3u®n,] cos v,
[r (=3 + 6u — 3u?) + x,(3 — 12u + 9u?)
+ x,(6u — 9u?) + 3u?r,] sinv,
z:(3 — 12u + 9u?) + z,(6u — 9u?) + 3u?h)
P,(u,v) = (—psinv,pcosv,0)
where  p =7 (1 —3u+3u? —u®) +x,(u—6u?+
3ud) +x,Bu? —3ud) +rud, 0<u<1 So the
coefficients of first fundamental form of rotational
surface (34) are obtained as

E = B* + 6%,

F=0,

G=p?

where

B =1 (=3 +6u—3u?)+x,(3—12u +9u?)
+ x,(6u — 9u?) + 3u’n,

0 = z;(3 — 12u + 9u?) + z,(6u — 9u?) + 3u?h.
Also, the unit normal of the surface can be found as

1
\ 6% + B2
The second derivatives of P(u, v) are given by

P, (u,v) = ([r (6 —6u) + x,(—12 + 18u)
+ x,(6 — 18u) + 6ur,] cosv,

[ri(6 —6u) + x,(—12 + 18u)
+ x,(6 — 18u) + 6ur,]sinwv,

z,(—12 + 18u) + z,(6 — 18u) + 6uh),
P,,(u,v) = (=B sinv, B cosv,0),
P,,(u,v) = (—pcosv,—psinv,0).

(35)

N(u,v) = (=6 cosv,—0Osinv,p).

Then, the coefficients of second fundamental form of
rotational surface are obtained by

=00+ up

T

po

Ny

respectively. Here,

(36)

o=1r.(6—6u)+x;(—12 + 18u) + x,(6 — 18u) + 6ur,
and
U=z (—12 + 18u) + z,(6 — 18u) + 6uh.

We have the following theorem.

Theorem 3. The mean curvature and Gaussian curvature
of the rotational surface (34) are

_ 6(B*+6%)+p(up-ab)

H 3 (37)
2p(B2+6%)2
and
_ 6(uB-96)
p(B2+6D? (38)

respectively.

In the following figures, one can see the cubic Bezier
curve and rotational surface (34) generated by this cubic
Bezier curve for n, =1, 1rn =2, x; =5, x, =10,
z, =25, z, =10, h = 10:

(A) Bezier curve (B) Rotational surface (34)
Figure 13. Bezier curve and rotational surface (34)

The following figures show the Gaussian and mean
curvatures functions’ graphics of the rotational surface
(34) and the variations of Gaussian and mean curvatures
on this surface:

10

(A) Gaussian curvature (B) Mean curvature

function’s graphic function’s graphic
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(€) Variation of Gaussian
curvature on surface

(D) Variation of mean
curvature on surface

Figure 14. Gaussian and mean curvatures’ graphics and the
variations of Gaussian and mean curvatures on
surface

Now, from (37) and (38), let us give some
characterizations for rotational surface (34) generated by
cubic Bezier curve.

Corollary 3. Let M be the rotational surface (34) which
is generated by cubic Bezier curve.

i. If the control point of P; is on the x-axis, then the
mean curvature of the surface cannot vanish at the
initial point of the Bezier curve.

ii. If the control point of P, is on the origin, then
the mean curvature of the surface cannot vanish
at the initial point of the Bezier curve.

iii. If the control point of P; is on the x-axis, then the
Gaussian curvature of the surface vanishes at the
initial point of the Bezier curve.

iv. If the control point of P, is on the origin, then the
Gaussian curvature of the surface cannot vanish at
the initial point of the Bezier curve.

v. If the control points of P, and P; are on the x-
axis, then the mean curvature of the surface
cannot vanish at the ending point of the Bezier
curve.

vi. If the control points of P, and P; are on the x-
axis, then the Gaussian curvature of the surface
vanishes at the ending point of the Bezier curve.

vii. If the control point of P,is on the origin and
the equation x;h = z;1,, then the Gaussian
curvature of the surface vanishes at the ending
point of the Bezier curve.

5. CONCLUSION

In the present study, we have used Hermitian and Bezier
curves in the cubic structure and applied a rotation to
these curves. Based on these curves, we have obtained
geometric shapes as the result of rotating surfaces.
Industrial objects such as lampshades, vases, bullets, etc.
provide less costly, more convenient and more reliable
results through the use of these structures. In this context,
by changing the values of constants r;,,, xq,x,, 21,2,
and h, different curves and rotational surfaces generated
by these curves can be obtained. In the geometric sense,
some characterizations which have been obtained with

the aid of mean and Gaussian curvatures of the rotational
surfaces generated by these curves have been examined.

The benefits of this study for industrial design are:

1. With the help of computer, some new procedure for
modelling some industrial objects can be obtained.

2. New ideas for producers about some object models
industry in the form of geometric surface design so as to
increase the choice of existing models previously can be
provided.

Furthermore, by defining the cubic Hermitian and cubic
Bezier curves in different spaces, such as Lorentz-
Minkowski space, Galilean space and pseudo Galilean
space, these curves and rotational surfaces can be
investigated as a future work.
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