
 

 

 

POLİTEKNİK DERGİSİ  
 
JOURNAL of POLYTECHNIC 
 
 
 
 
 
 
 

ISSN: 1302-0900 (PRINT), ISSN: 2147-9429  (ONLINE) 

URL: http://dergipark.gov.tr/politeknik 

 

 
Rotational surfaces generated by cubic 

hermitian and cubic bezier curves 

Kübik hermityen ve kübik bezier eğrileri 

tarafından oluşturulan dönel yüzeyler 

Yazar(lar) (Author(s)): Hakan GÜNDÜZ1, Ahmet KAZAN2, H. Bayram KARADAĞ3 

 

ORCID1: 0000-0003-0645-5658 

ORCID2: 0000-0002-1959-6102 

ORCID3: 0000-0001-6474-877X 

 

 

Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Gündüz H., Kazan A. and Karadağ 

H. B., “Rotational surfaces generated by cubic Hermitian and cubic bezier curves”, Politeknik Dergisi, 

22(4): 1075-1082, (2019). 

  
 
Erişim linki (To link to this article): http://dergipark.gov.tr/politeknik/archive 

DOI: 10.2339/politeknik.542825 

 

http://dergipark.gov.tr/politeknik
http://dergipark.gov.tr/politeknik/archive


Politeknik Dergisi, 2019; 22(4): 1075-1082  Journal of Polytechnic, 2019; 22(4): 1075-1082 

     

1075 

 Kübik Hermityen ve Kübik Bezier Eğrileri Tarafından 

Oluşturulan Dönel Yüzeyler 
Araştırma Makalesi / Research Article 

Hakan GÜNDÜZ1*, Ahmet KAZAN2, H. Bayram KARADAĞ3 
1Faculty of Art and Science, Department of Mathematics, Inonu University, Turkey 

2Doğanşehir Vahap Küçük Vocational School of Higher Education, Department of Computer Technologies, Malatya Turgut Özal 

University, Turkey 
3Faculty of Art and Science, Department of Mathematics, Inonu University, Turkey 

 (Geliş/Received : 21.03.2019 ; Kabul/Accepted : 05.04.2019) 

 ÖZ 

Dönel yüzeylerin şekillerinin ayarlanmasında geometrik tasarımın istenilen şekilde olması için, ilk olarak iki yerel şekil parametreli 

kübik Hermityan ve kübik Bezier eğrileri kullanılarak dönel yüzeyler oluşturuldu. Oluşturulan bu yeni dönel yüzeylerin, yerel şekil 

parametrelerinin değiştirilmesi ile yüzeylerin şekillerinin ayarlanması konusunda iyi bir performansa sahip olduğu görüldü. Ayrıca, 

kübik Hermityan ve kübik Bezier eğrileri tarafından oluşturulan dönel yüzeyler, ilgi çekici yüzeylerin tasarımı için değerli bir yol 

sağlamaktadır. Bu bağlamda, bu dönel yüzeylerin ortalama ve Gauss eğrilikleri elde edilerek, bu yüzeyler için bazı 

karakterizasyonlar verildi. 

Anahtar Kelimeler: Hermityen eğrileri, bezier eğrileri, dönel yüzeyler, şekil parametresi. 

Rotational Surfaces Generated by Cubic Hermitian and 

Cubic Bezier Curves 

ABSTRACT 

To tackle the geometric design in adjusting shapes of rotation surfaces, firstly the rotation surfaces have been constructed by using 

cubic Hermitian and cubic Bezier curves with two local shape parameters. It has been seen that, the new rotational surfaces which 

have been constructed have a good performance on adjusting their shapes by changing the local shape parameters. Also, the 

rotational surfaces generated by cubic Hermitian and cubic Bezier curves have provided a valuable way for the design of interesting 

surfaces. In this context, some characterizations have been given for these rotational surfaces obtaining the mean and Gaussian 

curvatures of them. 

Keywords: Hermitian curves, bezier curves, rotational surfaces, shape parameter.

1. INTRODUCTION 

Geometry of curves plays an important role in industrial 

design and engineering as well as being an important 

branch of mathematics. In recent years, many authors 

such as G. Farin, J. Hoschek and A. Saxena have worked 

on the structure of curves for mathematical modelling 

[5,6,10]. The most important of these curves are the 

Hermitian curves, Ferguson curves, Bezier curves and 

etc. The De Casteljau algorithm has shown that, Bezier 

curves are written as linear combinations of Bernstein 

polynomials (for detail about these curves, see [6,9,10]). 

Also, the geometry of surfaces such as, rotational 

surfaces, ruled surfaces, rational Bezier surfaces, rational 

B-spline surfaces, non-uniform rational B-spline 

surfaces, discrete surfaces and etc. have been studied by 

geometers  and   engineers  widely  in   Euclidean  space, 

Minkowski space, Galilean space, pseudo-Galilean space 

and etc [1,2,3,4,5,7,8].       

For example, E. Octafiatiningsih and I. Sujarwo have 

used Quadratic Bezier curve on rotational and 

symmetrical lampshade in [9]. So, by using this work we 

have constructed the present paper which is divided into 

three steps as follows: 

i. Recalling cubic Hermitian and cubic Bezier curves; 

ii. rotating cubic Hermitian curve and cubic Bezier 

curve about an axis to produce geometric surface 

designs; 

iii. giving some characterizations for these rotational 

surfaces obtaining the mean and Gaussian curvatures 

of them. 

Consequently, the aim of this study is modelling some 

industrial objects by constructing and rotating cubic 

Hermitian and cubic Bezier curves and also giving new 

ideas for producers about object modelling industry. 

 

2. PRELIMINARIES 

A cubic Hermitian curve is a cubic polinomial curve 

segment constrained to a given position 𝑝 and a tangent 

vector 𝑣 at each endpoints. 

*Sorumlu Yazar  (Corresponding Author)  
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Figure 1. Cubic Hermitian curve created with two control             

points and two tangent segments 

 

First, we’ll recall the parametric expression of a cubic 

Hermitian curve [6,10].  

A parametric cubic curve 𝑃(𝑢) in Euclidean 3-space is 

defined as P(u) = (x(u), y(u), z(u)), where  

𝑥(𝑢) = 𝑎𝑥 + 𝑏𝑥𝑢 + 𝑐𝑥𝑢
2 + 𝑑𝑥𝑢

3,  

𝑦(𝑢) = 𝑎𝑦 + 𝑏𝑦𝑢 + 𝑐𝑦𝑢2 + 𝑑𝑦𝑢3,                              (1) 

𝑧(𝑢) = 𝑎𝑧 + 𝑏𝑧𝑢 + 𝑐𝑧𝑢
2 + 𝑑𝑧𝑢

3,  

with parameters bounded in intervals 0 ≤ 𝑢 ≤ 1. Then, 

we can write it as 

𝑃(𝑢) = (𝑥(𝑢), 𝑦(𝑢), 𝑧(𝑢)) = 𝑎 + 𝑏𝑢 + 𝑐𝑢2 + 𝑑𝑢3.  (2) 

Then, for 𝑢 = 0 and 𝑢 = 1, we have 

𝑃(𝑢 = 0) = 𝑎, 

𝑃(𝑢 = 1) = 𝑎 + 𝑏 + 𝑐 + 𝑑,                             (3) 

𝑃′(𝑢 = 0) = 𝑏, 

𝑃′(𝑢 = 1) = 𝑏 + 2𝑐 + 3𝑑 

with 𝑎𝑥, 𝑏𝑥 , 𝑐𝑥 and 𝑑𝑥  are algebraic scalar coefficients. 

 

Figure 2.  Control points and tangent segments of cubic                

Hermitian curve for u = 0 and u = 1 

 

If the system (3) is solved, then the values of the vectors 

a, b, c and d are obtained by 

𝑎 = 𝑃(0), 

𝑏 = 𝑃′(0),                                                          (4) 

𝑐 = −3𝑃(0) + 3𝑃(1) − 2𝑃′(0) − 𝑃′(1), 

𝑑 = 2𝑃(0) − 2𝑃(1) + 𝑃′(0) + 𝑃 ′(1). 

If we use the equations (4) in (2), then the Hermitian 

curve is obtained as: 

𝑃(𝑢) = 𝑃(0)𝐻1(𝑢) + 𝑃(1)𝐻2(𝑢) + 𝑃′(0)𝐻3(𝑢) + 𝑃′(1)𝐻4(𝑢),   (5)  

where  𝐻1(𝑢), 𝐻2(𝑢), 𝐻3(𝑢)  and  𝐻4(𝑢)  are  the  base  

functions  (or  blending  functions) of Hermitian curve 

given by 

𝐻1(𝑢) = 1 − 3𝑢2 + 2𝑢3,  

𝐻2(𝑢) = 3𝑢2 − 2𝑢3,                                            (6) 

𝐻3(𝑢) = 𝑢 − 2𝑢2 + 𝑢3, 

 𝐻4(𝑢) = −𝑢2 + 𝑢3 

and 𝑃(0), 𝑃(1), 𝑃′(0) and 𝑃′(1) are geometric 

coefficients. 

 

Figure 3. Hermitian blending functions 

 

For the blending functions of Hermitian curve we have 

the following:  

At 𝑢 = 0 and 𝑢 = 1, we get 

𝐻1 = 1,𝐻2 = 𝐻3 = 𝐻4 = 0;𝑃(0) = 𝑃0, 

𝐻1
′ = 𝐻2

′ = 𝐻4
′ = 0,𝐻3

′ = 1;𝑃′(0) = 𝑇0, 

and 

𝐻1 = 𝐻3 = 𝐻4 = 0,𝐻2 = 1;𝑃(1) = 𝑃1, 

𝐻1
′ = 𝐻2

′ = 𝐻3
′ = 0,𝐻4

′ = 1;𝑃′(1) = 𝑇1, 
respectively. This gives us the endpoints and tangent 

vectors at endpoints by using blending functions. 

Also, by putting the blending functions we can give the 

matrix form of cubic Hermitian curves as follows:   

𝐻 = [𝐻1(𝑢), 𝐻2(𝑢), 𝐻3(𝑢), 𝐻4(𝑢)] 

     = [𝑢3  𝑢2  𝑢  1] [ 

   2
−3
   0
  1

  −2
    3
    0
   0

    1
−2
   1
   0

    1
 −1
    0
    0

 ] = 𝑈𝑀𝐻 ,            (7)            

where 𝑀𝐻 is called the Hermitian characteristic matrix. 

Collecting the Hermitian geometric coefficients into a 

geometric vector 𝐵, we have a matrix formulation for the 

Hermitian curve 𝑃(𝑢) as 

𝑃(𝑢) = 𝑈𝑀𝐻𝐵,                                                          (8) 

where 

𝐵 =

[
 
 
 

 

𝑃(0)

𝑃(1)

𝑃′(0)

𝑃′(1)

 

 

]
 
 
 

 . 

𝑀𝐻 transforms geometric coordinates from the Hermitian 

bases to the algebraic coefficients of the monomial bases. 
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Next, let us recall some notations about the cubic Bezier 

curve [6,10]. 

𝑛-th degree of Bezier curve is defined as (n+1) control 

points’ weighted linear combination using Bernstein 

polynomials. A Bezier curve can be expressed by 

𝑃(𝑢) = ∑ 𝐶𝑖
𝑛(1 − 𝑢)𝑛−𝑖𝑢𝑖𝑃𝑖

𝑛
𝑖=0  = ∑ 𝐵𝑖

𝑛(𝑢)𝑃𝑖 ,
𝑛
𝑖=0   0 ≤ 𝑢 ≤ 1, 

where 𝐵𝑖
𝑛(𝑢) is called Bernstein polynomials. More 

specifically, we can examine the behavior of Bezier curve 

for 3rd degree polynomials as follows: 

Let 𝑃(𝑢) be the cubic Bezier curve lying on 𝑥𝑧-plane.  It 

has 4 control points 𝑃𝑖  (𝑖 =  0, 1, 2, 3) and four base 

functions 𝑓𝑖(𝑢) (𝑖 = 0, 1, 2, 3) with parameters bounded 

in intervals 0 ≤ u ≤ 1. Then we can write it as 

𝑃(𝑢) = ∑𝑓𝑖(𝑢)𝑃𝑖 = 𝑓0(𝑢)𝑃0 + 𝑓1(𝑢)𝑃1

3

𝑖=0

+𝑓2(𝑢)𝑃2+𝑓3(𝑢)𝑃3 

with the base functions 

𝑓0(𝑢) = 1 − 3𝑢 + 3𝑢2 − 𝑢3, 

𝑓1(𝑢) = 3𝑢 − 6𝑢2 + 3𝑢3,                                             (9) 

𝑓2(𝑢) = 3𝑢2 − 3𝑢3,                  

𝑓3(𝑢) = 𝑢3.                                 

                
           Figure 4. Cubic Bezier Base Functions 

 

Also, according to the base functions, we can give the 

matrix form of cubic Bezier curve as follows: 

𝐵 = [𝑓1(𝑢), 𝑓2(𝑢), 𝑓3(𝑢), 𝑓4(𝑢)] 

    = [𝑢3  𝑢2  𝑢  1]  [ 

−1
    3 
−3
   1

    3
−6
   3
   0

  −3
   3
   0
   0

   1
   0
   0
   0

 ] = 𝑈𝑀𝐵 ,            (10)        

where 𝑀𝐵 is called the Bezier matrix. 

Collecting the Bezier geometric coefficients into a 

geometric vector 𝐺 which is defined by the user, is an 

array of data points. Here, we have a matrix formulation 

for the Bezier curve 𝑃(𝑢) as 

𝑃(𝑢) = 𝑈𝑀𝐵𝐺,                                                        (11) 

where 

𝐺 = [ 

𝑃0

𝑃1

𝑃2

𝑃3

 

 ] . 

Note that the curve does not pass through the points 

𝑃1 and 𝑃2. In cubic Bezier segments, in order to change 

the curve’s shape we may relocate any of control points 

𝑃0, 𝑃1,  𝑃2 or 𝑃3. We also know that, for Hermitian 

segments, we have to specify end slopes for a particular 

shape and this situation is difficult for researchers. 

Furthermore, Bezier curve is easier to specify the shape 

of control polyline than Hermitian curve. 

For more details about Hermitian and Bezier curves, we 

refer to [6,9,10]. 

Now, let us investigate the rotational surfaces according 

to the axes of rotation in 𝐸3. 

Rotation is the change of an object coordinates into the 

new position by moving the whole coordinate points 

defined in the initial form with an angle about an axis of 

rotation. The coordinate system 𝐸3 has three rotation 

axes.  First suppose that the axis of rotation is the 𝑧-axis. 

Let 𝐴 be a  3 × 3  regular matrix and 0 ≠ 𝜉 ∈ 𝐸3 be a 

vector.  If 𝐴 satisfies the following conditions, then it is 

said that 𝐴 denotes a rotation in positive direction 

i. 𝐴𝜉 = 𝜉, 

ii. 𝐴𝐼𝐴𝑡 = 𝐼, 

iii. det 𝐴 = 1, 

where 𝐼 is the 3 × 3 unit matrix. 

From this definition, it can be seen that the rotation 

matrix which fixes the 𝑧-axis is the set of 3 × 3 matrices 

defined by 

𝐴(𝑣) = [
cos 𝑣 − sin 𝑣 0
sin 𝑣 cos 𝑣 0

0 0 1
] ,   𝑣 ∈ ℝ  

Then, by rotating the curve  

𝛼(𝑢) = (𝛼1(𝑢), 𝛼2(𝑢), 𝛼3(𝑢)) about the 𝑧-axis, the 

rotational surface 𝑀 can be parametrized by 

Ψ(𝑢, 𝑣) = (𝛼1(𝑢) cos 𝑣 − 𝛼2(𝑢) sin 𝑣 , 𝛼1(𝑢) sin 𝑣 

                         +𝛼2(𝑢) cos 𝑣, 𝛼3(𝑢)).                          (12) 

By rotating the curve 𝛼 about the 𝑥-axis and 𝑦-axis, one 

can write the rotational surfaces similarly. 

 

3. CONSTRUCTION OF ROTATIONAL 

SURFACES GENERATED BY CUBIC 

HERMITIAN CURVE 

In this section, we’ll construct the rotational surface 

generated by cubic Hermitian curve by using the 

structure of a tube deformation. 

Suppose given a tube of radius 𝑟, where 𝑟 ∈ [𝑎, 𝑏], i.e. 

the minimum radius of the tube is 𝑎 and the maximum of 

the radius is 𝑏. Also, let we define the height of the tube 

as ℎ, where ℎ ∈ [𝑐, 𝑑], i.e. the minimum height of the 

tube is 𝑐 while the maximum of the radius is 𝑑. The 

selection of the value of 𝑟 and ℎ in the interval aims to 

diff erences in size of shape components of geometric 

design. 

Firstly, we determine a center point on the tube base 

circle (𝑥1, 𝑦1, 𝑧1) = (0,0,0).  Then, for this center point 

and 𝑣 = 0 the tube base circle using the circle equation 

is built and the point 𝑃(0) is given by 

(𝑥1 + 𝑟1 cos 𝑣, 𝑦1 + 𝑟1 sin 𝑣 , 𝑧1) = (𝑟1, 0,0).            (13) 
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Also, let the center point on the tube roof circle be 
(𝑥1, 𝑦1, 𝑧1) = (0,0, ℎ). Then, for  𝑣 = 0, we can build 

tube roof circle using the circle equation and obtain the 

point, namely 𝑃(1) as 

(𝑥1 + 𝑟2 𝑐𝑜𝑠 𝑣, 𝑦1 + 𝑟2 𝑠𝑖𝑛 𝑣 , 𝑧1) = (𝑟2, 0, ℎ).           (14) 

Then, for controlling the curvatures of the Hermitian 

curve, we can determine the control points 𝑃′(0) and 

𝑃′(1) as follows: 

𝑃′(0) = (𝑥, 0,0)                                                        (15) 

and 

𝑃′(1) = (𝑥, 0, 𝑧),                                                        (16) 

where −2𝑟 ≤ 𝑥, 𝑧 ≤ 2ℎ and 𝑥, 𝑧 ∈ ℝ. 

 

         

Figure 5.  Representation of a tube deformation for Hermitian     

curve  

 

Further by using (13)-(16) in the equation 𝑃(𝑢) =
𝑃(0)𝐻1(𝑢) + 𝑃(1)𝐻2(𝑢) + 𝑃′(0)𝐻3(𝑢) + 𝑃′(1)𝐻4(𝑢), 

the Hermitian curve is obtained by  

𝑃(𝑢) = (𝑟1𝐻1(𝑢) + 𝑟2𝐻2(𝑢) + 𝑥𝐻3(𝑢) +

             𝑥𝐻4(𝑢), 0, ℎ𝐻2(𝑢) + 𝑧𝐻4(𝑢)), 0 ≤ 𝑢 ≤ 1   (17) 

with the blending functions (6). 

3.1. Some Characterizations of Rotational Surfaces 

Generated By Cubic Hermitian Curve 

In this subsection, firstly we’ll give some examples for 

rotational surface generated by cubic Hermitian curve by 

obtaining the parametric expression of it. Also, we’ll give 

some characterizations for it with the aid of the mean and 

Gaussian curvatures. 

By rotating the Hermitian curve (17) around 𝑧-axis, we 

get the rotational surface as 

𝑃(𝑢, 𝑣) = ([𝑟1(1 − 3𝑢2 + 2𝑢3) + 𝑟2(3𝑢2 − 2𝑢3)
+ 𝑥(𝑢 − 3𝑢2 + 2𝑢3)] cos 𝑣, 

                      [𝑟1(1 − 3𝑢2 + 2𝑢3) + 𝑟2(3𝑢2 − 2𝑢3)
+ 𝑥(𝑢 − 3𝑢2 + 2𝑢3)] sin 𝑣, 

                      ℎ(3𝑢2 − 2𝑢3) + 𝑧(−𝑢2 + 𝑢3)).            (18) 

In the following figures, one can see the rotational surface 

(18) for 𝑥 = 100, ℎ = 15, 𝑧 = 150 and diff erent radius 

𝑟1 and 𝑟2: 

 

           

         (A)  r1 = 20, r2 = 10                    (B)  𝑟1 = 10, 𝑟2 = 20 

 

            (C)  𝑟1 =  𝑟2 = 20                          (D)  𝑟1 = 𝑟2 = 10 

 

Figure 6. Rotational surface (18) for diff erent radius 

 

Now,  by  taking 𝑟1 = 𝑟2 = 𝑟 in  (18),  we  can  write  the  

rotational  surface  generated  by cubic Hermitian curve 

as 

𝑃(𝑢, 𝑣) = ([𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)] cos 𝑣, 

                     [𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)] sin 𝑣, 

                     ℎ(3𝑢2 − 2𝑢3) + 𝑧(−𝑢2 + 𝑢3)).             (19) 

In the following figures, one can see the Hermitian curve 

and rotational surface (19) generated by this cubic 

Hermitian curve for 𝑟 = 10, 𝑥 = 300, ℎ = 15, 𝑧 = 400:    

                                     

 (𝐴) Hermitian curve                 (𝐵) Rotational surface  

Figure 7. Hermitian curve and rotational surface (19) 

 

The coefficients of the first and second fundamental 

forms of the rotational surface (19) are obtained as 

𝐸 = 𝑥2(1 − 6𝑢 + 6𝑢2)2 

        +[6ℎ𝑢(1 − 𝑢) + 𝑧𝑢(−2 + 3𝑢)]2, 

𝐹 = 0,                                                                      (20) 

𝐺 = [𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)]2 

and 

𝐿 =
2𝑥

√𝐷
[3ℎ(1 − 2𝑢) − 𝑧(1 − 3𝑢 + 3𝑢2) ], 

𝑀 = 0,                                                                           (21)                                                                                              

𝑁 =
1

√𝐷
[𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)] × 

                 [6ℎ𝑢(1 − 𝑢) + 𝑧𝑢(−2 + 3𝑢)], 
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respectively. Here, the unit normal of the surface is 

𝑁(𝑢, 𝑣) =
1

√𝐷
(−[6ℎ𝑢(1 − 𝑢) + 𝑧𝑢(−2 + 3𝑢)] cos 𝑣, 

                             −[6ℎ𝑢(1 − 𝑢) + 𝑧𝑢(−2 + 3𝑢)] sin 𝑣, 

                             𝑥(1 − 6𝑢 + 6𝑢2)) 

and  

𝐷 = [6ℎ𝑢(1 − 𝑢) + 𝑧𝑢(−2 + 3𝑢)]2 

         +𝑥2(1 − 6𝑢 + 6𝑢2)2. 

So, we can give the following Theorem: 

Theorem 1. The mean curvature and Gaussian curvature 

of the rotational surface (19) are 

𝐻 =

2𝑥[𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)] ×

[3ℎ(1 − 2𝑢) − 𝑧(1 − 3𝑢 + 3𝑢2) ] +

[𝑥2(1 − 6𝑢 + 6𝑢2)2 + [6ℎ𝑢(1 − 𝑢) + 𝑧𝑢(−2 + 3𝑢)]2] ×

[6ℎ𝑢(1 − 𝑢) + 𝑧𝑢(−2 + 3𝑢)]

2[𝑥2(1 − 6𝑢 + 6𝑢2)2 + [6ℎ𝑢(1 − 𝑢) + 𝑧𝑢(−2 + 3𝑢)]2]
3

2 ×

[𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)]

 

  and                                                                                  (22) 

𝐾 =

2𝑥[3ℎ(1 − 2𝑢) − 𝑧(1 − 3𝑢 + 3𝑢2) ] ×

[6ℎ𝑢(1 − 𝑢) + 𝑧𝑢(−2 + 3𝑢)]

[𝑥2(1 − 6𝑢 + 6𝑢2)2 + [6ℎ𝑢(1 − 𝑢) + 𝑧𝑢(−2 + 3𝑢)]2]2 ×

[𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)]

, 

                                                                                    (23) 

respectively. 

The following figures show the Gaussian and mean 

curvatures functions’ graphics of the rotational surface 

(19) for 𝑟 = 10, 𝑥 = 300, ℎ = 15, 𝑧 = 400 and the 

variations of Gaussian and mean curvatures on this 

surface: 

 

 (𝐴) Gaussian curvature             (𝐵) Mean curvature  

       function’s graphic                     function’s graphic 

 

 

(C) Variation of Gaussian       (D) Variation of mean curvature 

       curvature on surface               on surface 

Figure 8. Gaussian and mean curvatures’ graphics and the 

variations of Gaussian and mean curvatures on 

surface 

Now, let us take 𝑧 = 2ℎ in the equations (19)-(23). Then, 

we have 

𝑃(𝑢, 𝑣) = ([𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)] cos 𝑣, 

                     [𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)] sin 𝑣, ℎ𝑢2).       (24) 

In the following figures, one can see the Hermitian curve 

and rotational surface (24) generated by this cubic 

Hermitian curve for 𝑟 = 1, 𝑥 = 20, ℎ = 5, 𝑧 = 10: 
     

 

     (𝐴) Hermitian curve                  (𝐵) Rotational surface 

Figure 9. Hermitian curve and rotational surface (24) 

Also, for (24) 

𝐸 = 𝑥2(1 − 6𝑢 + 6𝑢2)2 + 4ℎ2𝑢2,   𝐹 = 0, 

𝐺 = [𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)]2                           (25) 

and 

 𝐿 =
2ℎ𝑥

√𝐷
(1 − 6𝑢2),   𝑀 = 0, 

𝑁 =
2ℎ𝑢

√𝐷
[𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)].                             (26) 

Theorem 2. The mean curvature and Gaussian curvature 

of the rotational surface (24) are 

𝐻 =

ℎ{𝑥(1 − 6𝑢2)[𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)]} +

ℎ𝑢[𝑥2(1 − 6𝑢 + 6𝑢2)
2

+ 4ℎ2𝑢2]

[𝑥2(1 − 6𝑢 + 6𝑢2)
2

+ 4ℎ2𝑢2]
3

2[𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)]
 

 and                                                                                   (27) 

𝐾 =
4ℎ2𝑥𝑢(1 − 6𝑢2)

[𝑥2(1 − 6𝑢 + 6𝑢2)
2

+ 4ℎ2𝑢2]2[𝑟 + 𝑥(𝑢 − 3𝑢2 + 2𝑢3)]
 , 

                                                                                    (28) 

respectively.  

The following figures show the Gaussian and mean 

curvatures functions’ graphics of the rotational surface 

(24) for 𝑟 = 1, 𝑥 = 20, ℎ = 5, 𝑧 = 10 and the 

variations of Gaussian and mean curvatures on this 

surface: 

(𝐴) Gaussian curvature’s               (𝐵) Mean curvature’s  

        graphic                                           

graphic   

   (C) Variation of Gaussian              (D) Variation of mean  

           curvature on surface                      curvature on surface 

Figure 10. Gaussian and mean curvatures’ graphics and the 

variations of Gaussian and mean curvatures on surface 
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Now, from (27) and (28) we can give the following 

characterizations: 

Corollary 1. Let M be the rotational surface (24) which 

is generated by cubic Hermitian curve. 

i. Then, the mean curvature of surface cannot 

vanish at the initial point of the Hermite curve. 

ii. Then, the mean curvature of surface vanishes at 

the ending point of the Hermite curve if and only 

if the equation 5ℎ𝑟𝑥 = 𝑥2 + 4ℎ2 holds. 

iii. If the mean curvature of surface vanishes at the 

ending point of the Hermite curve, then the 

control point of 𝑃′(1) cannot be on the z-axis or 

the control point of 𝑃′(0) cannot be on the origin. 

Corollary 2. Let M be the rotational surface (24) which 

is generated by cubic Hermitian curve. Then, the 

Gaussian curvature of surface 

i. vanishes at the initial point of the Hermite curve; 

ii. vanishes on the parametric curve 𝑃(
1

√6
, 𝑣) of  𝑀; 

iii. vanishes, if the control point of 𝑃′(1) is on the 𝑧-

axis or the control point of 𝑃′(0) is on the origin. 

 

4. CONSTRUCTION OF ROTATIONAL 

SURFACES GENERATED BY CUBIC BEZIER 

CURVE 

 

In this section, we’ll construct the rotational surface 

generated by cubic Bezier curve by using the structure of 

a tube deformation. 

Suppose  given  a  tube  of  radius 𝑟1 and 𝑟2,  where  

𝑟1, 𝑟2 ∈ [𝑎, 𝑏].   Also,  let  we  define  the height  of  the  

tube  as ℎ,  where ℎ ∈ [𝑐, 𝑑].  The  selection  of  the  value 

of  𝑟1, 𝑟2 and  ℎ in  the interval aims to diff erences in size      

of shape components of geometric design. 

Firstly, we determine a center (initial) point on the tube 

base circle (𝑥1, 𝑦1 , 𝑧1) = (0,0,0). Then, for this center 

(initial) point and 𝑣 = 0 the tube base circle using the 

circle equation is built and the point 𝑃0 is given by 

𝑃0 = (𝑥1 + 𝑟1 cos 𝑣, 𝑦1 + 𝑟1 sin 𝑣 , 𝑧1) = (𝑟1, 0,0).    (29) 

Also, let the center (ending) point on the tube roof circle 

be (𝑥1, 𝑦1, 𝑧1) = (0,0, ℎ). Then, for 𝑣 = 0, we can build 

tube roof circle using the circle equation and obtain the 

point, namely 𝑃3 as 

𝑃3 = (𝑥1 + 𝑟2 cos 𝑣, 𝑦1 + 𝑟2 sin 𝑣 , 𝑧1) = (𝑟2, 0, ℎ).   (30) 

Then, the other two control points 𝑃1 and 𝑃2 of the cubic 

Bezier curve can be defined as follows: 

𝑃1 = (𝑥1, 0, 𝑧1)                                                             (31) 

and 

𝑃2 = (𝑥2, 0, 𝑧2).                                                       (32) 

                   
Figure 11. Representation of a tube deformation for Bezier 

curve 

 

Further by using (29)-(32) in the equation  

𝑃(𝑢) = 𝑓0(𝑢)𝑃0 + 𝑓1(𝑢)𝑃1 + 𝑓2(𝑢)𝑃2 + 𝑓3(𝑢)𝑃3,       

the Bezier curve is obtained by 

𝑃(𝑢) = (𝑟1𝑓0(𝑢) + 𝑥1𝑓1(𝑢) + 𝑥2𝑓2(𝑢) + 𝑟2𝑓3(𝑢), 0, 

                𝑧1𝑓1(𝑢) + 𝑧2𝑓2(𝑢) + ℎ𝑓3(𝑢)), 0 ≤ 𝑢 ≤ 1    (33) 

with the base functions (9). 

4.1. Some Characterizations of Rotational Surfaces 

Generated By Cubic Bezier Curve 

In this subsection, firstly we’ll give some examples for 

rotational surface generated by cubic Bezier curve by 

obtaining the parametric expression of it. Also, we’ll give 

some characterizations for it with the aid of the mean and 

Gaussian curvatures. 

By rotating the Bezier curve (33) around z-axis, we get 

the rotational surface 𝑃(𝑢, 𝑣) with two local shape 

parameters as 

([𝑟1(1 − 3𝑢 + 3𝑢2 − 𝑢3) + 𝑥1(3𝑢 − 6𝑢2 + 3𝑢3)
+ 𝑥2(3𝑢2 − 3𝑢3) + 𝑟2𝑢

3] cos 𝑣, 

  [𝑟1(1 − 3𝑢 + 3𝑢2 − 𝑢3) + 𝑥1(3𝑢 − 6𝑢2 + 3𝑢3)
+ 𝑥2(3𝑢2 − 3𝑢3) + 𝑟2𝑢

3] sin 𝑣, 

   𝑧1(3𝑢 − 6𝑢2 + 3𝑢3) + 𝑧2(3𝑢2 − 3𝑢3) + 𝑢3ℎ).      (34) 

 

In the Figure 12, one can see the rotational surface (34) 

for diff erent values of 𝑟1, 𝑟2,  𝑥1,  𝑥2,, 𝑧1,  𝑧2 and ℎ which 

have been choosed as following, respectively: 

(𝐴) 𝑟1 = 2, 𝑟2 = 0,  𝑥1 = 5, 𝑥2 = 10, 𝑧1 = 10, 𝑧2 = 2    and           

ℎ = 0.1; 

(𝐵) 𝑟1 = 1,  𝑟2 = 2,  𝑥1 = 10, 𝑥2 = 5, 𝑧1 = 25, 𝑧2 = 10 and 

ℎ = 1; 

(𝐶) 𝑟1 = 1, 𝑟2 = 2, 𝑥1 = 20, 𝑥2 = 5, 𝑧1 = 20, 𝑧2 = 5 and  

ℎ = 20; 

(𝐷) 𝑟1 = 1,  𝑟2 = 2,  𝑥1 = 50,  𝑥2 = 35, 𝑧1 = 40, 𝑧2 = 25   

and ℎ = 90.  
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               (𝐴)                                           (𝐵) 

              (𝐶)                                           (𝐷) 

 

Figure 12. Rotational surface (34) for diff erent values of 

𝑟1, 𝑟2,  𝑥1,  𝑥2,, 𝑧1,  𝑧2 and ℎ 

 

The first derivative of the surface (34) with respect to u 

and v are 

𝑃𝑢(𝑢, 𝑣) = ([𝑟1(−3 + 6𝑢 − 3𝑢2) + 𝑥1(3 − 12𝑢 + 9𝑢2)
+ 𝑥2(6𝑢 − 9𝑢2) + 3𝑢2𝑟2] 𝑐𝑜𝑠 𝑣, 

                      [𝑟1(−3 + 6𝑢 − 3𝑢2) + 𝑥1(3 − 12𝑢 + 9𝑢2)
+ 𝑥2(6𝑢 − 9𝑢2) + 3𝑢2𝑟2] sin 𝑣, 

                  𝑧1(3 − 12𝑢 + 9𝑢2) + 𝑧2(6𝑢 − 9𝑢2) + 3𝑢2ℎ) 

𝑃𝑣(𝑢, 𝑣) = (−𝜌 sin 𝑣, 𝜌 cos 𝑣, 0) 

where 𝜌 = 𝑟1(1 − 3𝑢 + 3𝑢2 − 𝑢3) + 𝑥1(3𝑢 − 6𝑢2 +
3𝑢3) + 𝑥2(3𝑢2 − 3𝑢3) + 𝑟2𝑢

3, 0 ≤ 𝑢 ≤ 1. So the 

coefficients of first fundamental form of rotational 

surface (34) are obtained as 

𝐸 = 𝛽2 + 𝜃2, 

𝐹 = 0,                                                                      (35) 

𝐺 = 𝜌2, 

where  
𝛽 = 𝑟1(−3 + 6𝑢 − 3𝑢2) + 𝑥1(3 − 12𝑢 + 9𝑢2)

+ 𝑥2(6𝑢 − 9𝑢2) + 3𝑢2𝑟2, 

𝜃 = 𝑧1(3 − 12𝑢 + 9𝑢2) + 𝑧2(6𝑢 − 9𝑢2) + 3𝑢2ℎ. 

Also, the unit normal of the surface can be found as 

𝑁(𝑢, 𝑣) =
1

√𝜃2 + 𝛽2
(−𝜃 cos 𝑣, −𝜃 sin 𝑣 , 𝛽). 

The second derivatives of 𝑃(𝑢, 𝑣) are given by 

𝑃𝑢𝑢(𝑢, 𝑣) = ([𝑟1(6 − 6𝑢) + 𝑥1(−12 + 18𝑢)
+ 𝑥2(6 − 18𝑢) + 6𝑢𝑟2] cos 𝑣, 

                 [𝑟1(6 − 6𝑢) + 𝑥1(−12 + 18𝑢)
+ 𝑥2(6 − 18𝑢) + 6𝑢𝑟2] sin 𝑣, 

                 𝑧1(−12 + 18𝑢) + 𝑧2(6 − 18𝑢) + 6𝑢ℎ), 

𝑃𝑢𝑣(𝑢, 𝑣) = (−𝛽 sin 𝑣, 𝛽 cos 𝑣 , 0), 

𝑃𝑣𝑣(𝑢, 𝑣) = (−𝜌 cos 𝑣, −𝜌 sin 𝑣, 0). 

Then, the coefficients of second fundamental form of 

rotational surface are obtained by 

𝐿 =
−𝜎𝜃 + 𝜇𝛽

√𝜃2 + 𝛽2
, 

𝑀 = 0,                                                                      (36) 

𝑁 =
𝜌𝜃

√𝜃2 + 𝛽2
, 

respectively. Here,  

𝜎 = 𝑟1(6 − 6𝑢) + 𝑥1(−12 + 18𝑢) + 𝑥2(6 − 18𝑢) + 6𝑢𝑟2   

and 

  𝜇 = 𝑧1(−12 + 18𝑢) + 𝑧2(6 − 18𝑢) + 6𝑢ℎ. 

We have the following theorem. 

Theorem 3. The mean curvature and Gaussian curvature 

of the rotational surface (34) are 

𝐻 =
𝜃(𝛽2+𝜃2)+𝜌(𝜇𝛽−𝜎𝜃)

2𝜌(𝛽2+𝜃2)
3
2

                                                         (37)                                                                       

and  

𝐾 =
𝜃(𝜇𝛽−𝜎𝜃)

𝜌(𝛽2+𝜃2)2
  ,                                                          (38) 

respectively. 

In the following figures, one can see the cubic Bezier 

curve and rotational surface (34) generated by this cubic 

Bezier curve for  𝑟1 = 1, 𝑟2 = 2, 𝑥1 = 5,  𝑥2 = 10,
𝑧1 = 25,  𝑧2 = 10, ℎ = 10: 

   

  (𝐴) Bezier curve                    (𝐵)   Rotational surface (34) 

Figure 13. Bezier curve and rotational surface (34) 

 

The following figures show the Gaussian and mean 

curvatures functions’ graphics of the rotational surface 

(34) and the variations of Gaussian and mean curvatures 

on this surface: 

  

 (𝐴) Gaussian curvature                   (𝐵) Mean curvature   

         function’s graphic                            function’s graphic    
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  (𝐶) Variation of Gaussian         (𝐷) Variation of mean       

          curvature on surface                 curvature on surface 

 

Figure 14. Gaussian and mean curvatures’ graphics and the 

variations of Gaussian and mean curvatures on 

surface 

 

Now, from (37) and (38), let us give some 

characterizations for rotational surface (34) generated by 

cubic Bezier curve. 

Corollary 3. Let 𝑀 be the rotational surface (34) which 

is generated by cubic Bezier curve. 

i. If the control point of 𝑃1 is on the 𝑥-axis, then the 

mean curvature of the surface cannot vanish at the 

initial point of the Bezier curve. 

ii. If  the  control  point  of  𝑃1 is  on  the  origin,  then  

the  mean  curvature  of  the  surface cannot vanish 

at the initial point of the Bezier curve. 

iii. If the control point of 𝑃1 is on the 𝑥-axis, then the 

Gaussian curvature of the surface vanishes at the 

initial point of the Bezier curve. 

iv. If the control point of 𝑃2 is on the origin, then the 

Gaussian curvature of the surface cannot vanish at 

the initial point of the Bezier curve. 

v. If  the  control  points  of  𝑃2 and  𝑃3 are  on  the  𝑥-

axis,  then  the  mean  curvature  of  the surface 

cannot vanish at the ending point of the Bezier 

curve. 

vi. If  the  control points  of  𝑃2 and  𝑃3 are  on  the  𝑥-

axis, then  the  Gaussian  curvature  of the surface 

vanishes at the ending point of the Bezier curve. 

vii. If  the  control  point  of  𝑃2 is  on  the  origin  and  

the  equation  𝑥1ℎ = 𝑧1𝑟2, then  the Gaussian 

curvature of the surface vanishes at the ending 

point of the Bezier curve. 

  

5. CONCLUSION  

In the present study, we have used Hermitian and Bezier 

curves in the cubic structure and applied a rotation to 

these curves. Based on these curves, we have obtained 

geometric shapes as the result of rotating surfaces. 

Industrial objects such as lampshades, vases, bullets, etc. 

provide less costly, more convenient and more reliable 

results through the use of these structures.  In this context,  

by changing the values of constants 𝑟1, 𝑟2, 𝑥1, 𝑥2,  𝑧1, 𝑧2 

and ℎ, diff erent curves and rotational surfaces generated 

by these curves can be obtained. In the geometric sense, 

some characterizations which have been obtained with 

the aid of mean and Gaussian curvatures of the rotational 

surfaces generated by these curves have been examined. 

The benefits of this study for industrial design are: 

1. With the help of computer, some new procedure for 

modelling some industrial objects can be obtained. 

2. New ideas for producers about some object models 

industry in the form of geometric surface design so as to 

increase the choice of existing models previously can be 

provided. 

Furthermore, by defining the cubic Hermitian and cubic 

Bezier curves in diff erent spaces, such as Lorentz-

Minkowski space, Galilean space and pseudo Galilean 

space, these curves and rotational surfaces can be 

investigated as a future work. 
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