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Abstract

In the present study, firstly we recall the parametric expressions of planar curves with zero ¢-curvature
in Euclidean 3-space with density e**t and with the aid of the Frenet frame of these planar curves, we
obtain the Smarandache curves of them. After that, we study on ruled surfaces which are constructed by
the curves with zero g-curvature in Euclidean 3-space with density e®*1 and their Smarandache curves
by giving the striction curves, distribution parameters, mean curvature and Gaussian curvature of these
ruled surfaces. Also, we give some examples for these surfaces by plotting their graphs. We use
Mathematica when we are plotting the graphs of examples.

Keywords: Ruled surfaces, Smarandache curves, Weighted curvature.

1. Introduction

The curves and surfaces are popular topics studied in
classical differential geometry and the problem of
acquiring mean and Gaussian curvature of a
hypersurface in the Euclidean and other spaces is one of
the most important problems for geometers. Nowadays,
manifold with density (or weighted manifold) is a new
topic in geometry and it has been studied in many areas
of mathematics, physics and economics. On the other
hand, a ruled surface is a surface that can be swept out
by moving aline in space and they can be used on
different areas such as architectural, CAD, electric
discharge machining and etc [1-3].

Furthermore, weighted manifold is a Riemannian
manifold with positive density function e?. In 2003,
Gromow [4] has introduced weighted curvature (or ¢-
curvature) k,, of a curve and weighted mean curvature
(or ¢@-mean curvature) H, of an n-dimensional
hypersurface on a manifold with density e¥. Also, the
generalizations of weighted curvature of a curve,
weighted mean curvature and weighted Gaussian
curvature (or ¢-Gaussian curvature) G,, of a Riemannian
manifold with density e? has been given in [5]. After
these definitions, lots of studies about the different
characterizations of the curves and surfaces in different
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spaces with density have been done, for instance, [6-23]
and etc.

In the present paper, striction curves, distribution
parameters, mean and Gaussian curvatures of the ruled
surfaces constructed by curves with zero weighted
curvature in Euclidean 3-space with density and the
Smarandache curves of them are obtained and some
characterizations are given for them.

2. Preliminaries
Let a(u) be a planar curve given bya(u) =

(%1 (W), x,(u),0). Then the Frenet frame {T, N, B} and
curvature k of it in the Euclidean 3-space are [24].

T(w) = (x1 (), x2 (), 0),

x; (u)? + x5 (w)?

Vg (w)? + xy(w)?
B(u) = (0,0,1),

x1 (Wxy' (W) — x1" (Wxz (W)
k(u) = .

(@2 + xy(wW)D)3

N() = (=xz (W), x1 (), 0),

2.1)

Also, Smarandache curves which are introduced with
the aid of Frenet frame of a curve is an important topic


http://mathworld.wolfram.com/Surface.html
http://mathworld.wolfram.com/Line.html

: Celal Bayar University Journal of Science
Volume 16, Issue 1, 2020, p 81-88

Doi: 10.18466/cbayarfbe.632176

for differential geometry of curves and if we denote TN-
Smarandache curve as yry, TB-Smarandache curve as
yre, NB-Smarandache curve as yyg and TNB-
Smarandache curve as yryp Of a(w), then they are
defined as follows

T(u)+N(u)
ITW+N @)l

T(w)+B(u)
ITw)+B)I’

Yov(W) = c yre(w) = (2.2)

N(u)+B(u)
IN@)+N @)l

T(uw)+Nu)+B(u)

and Yrve (W = v sl

Yns(W) =
The parametrization of

ow,v) =a)+v.X(w), uuvelcR (2.3)
is called a ruled surface, where the curve a(u) is base
curve and X (w) is ruling of it. The striction curve and
distribution parameter of a ruled surface are given by

(' ()X (w)
X" (wl|?

Bw) = a(u) - X(w) (2.4)

and

6= X’ (w2 ’

(2.5)
respectively [25,26]. Also, the distribution parameter
gives a characterization for ruled surface and it is known
that, the ruled surface whose distribution parameter
vanishes is developable.

If k and N are the curvature and the normal vector of a
curve, respectively, then the ¢-curvature k, of the
curve on a manifold with density e? is defined by [5]

(2.6)

Ko =K——

N’

3. Results and Discussion

3.1. Planar Curves with Zero ¢-Curvature in E3
with Density

In [27], authors have found that, the planar curves with

zero ¢-curvature in Euclidean space with density
e®1, (a # 0) can be parameterized by

arctan( ¢ e2ax () — 1)

a,(u) = x,(w),c, ¥ A ,0
or
In(cos(dq+ax;(u)))
a, () = (d, — =20 e ) 0),
where, ¢; > e 21 _ §+ 2k < d; + ax,(u) <

§+ 2km and ¢y, c,,dy,d, ER, k EZ.

So, the TN-Smarandache curve y,,,, TB-Smarandache
CUrve vy, NB-Smarandache curve y;,. and TNB-
Smarandache curve y;,,, of the curve a, (u) are written
as
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YITN(u)
_1+C162ax1(u)_1 _1+C162ax1(u)+1 .

Yipg(W) = ) = |, (3.1)
irB \/chezaxl(u) \/chezaxl(u) V2
y u)= ’ y =
e JZClezaxl(u) \/chezaxl(u) vz
YITNB(u)

[_1 + CleZ(lxl(u) -1 -1+ Clezaxl(u) +1 1
/3C162ax1(u) ’ /3C162ax1(u) ,ﬁ ’

respectively and the TN-Smarandache curve y,.., TB-
Smarandache curve y,,.., NB-Smarandache curve y,, ,
and TNB-Smarandache curve y,,., . of the curve a,(u)
are written as

Yorn (w) = \/% (sin(d; + ax,(u)) — cos(d; + ax,(w)),
cos(d; + ax,(w)) + sin(d; + ax,(u)),0),

Vars (W) = 5 (sin(dy + ax, (W), cos(ds + ax,(w)),1),
(3.2)
Yo (W) = \/% (—cos(d, + ax,(w)), sin(d, +
ax,(u)),1),
(sin(dy + ax,(u)) — cos(d, + ax,(u)),

V3
sin(d, + ax,(u)) + cos(d, + ax,(u)),1),

szNB (u')

respectively.

Furthermore, the results of the planar curves with zero
@-curvature in Euclidean space with density e?*2 can be
obtained with similar procedure to the planar curve with
zero @-curvature in Euclidean space with density e®*1,

3.2. Ruled Surfaces Constructed by Planar Curves in
Euclidean 3-Space with Density
3.2.1. Ruled Surfaces Constructed by the curve
a4 (u) and its Smarandache Curves

In this subsection, firstly we construct the ruled surfaces
with the help of the curve a,(u) and its Smarandache
curves. Also, we obtain the mean curvatures, Gaussian
curvatures, distribution parameters and striction curves
for each of these ruled surfaces and give some
characterizations for them.

Throughout this subsection, the base curves of ruled
surfaces will be taken as the curve a; (u).
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If the ruling of the ruled surface is the TN-Smarandache
curve yy,, (u) of the curve a;(u), then from (2.3) and
(3.1), the ruled surface ¢, (u, v) can be given by

arctan (,/clez“xl(“) - 1)
a
-1+ ce?an® 41

+v ,0)
/cheZaxl(u)

Since the ruled surface ¢, is a parameterization of a
plane, it is obvious that, the Gaussian and mean
curvatures are zero and from (2.5), also the distribution
parameter is zero and the surface is developable.

(plTN (u’ 7.7) =a; (u) + UleN (u)

V=14 ¢e2ax —1
=(x(uw+v
lzcleZaxl(u)

c, +

Also,
Theorem 3.2.1.1. The base curve and the striction curve
of ¢y, never intersect.

Proof. From (2.4), the striction curve g, of ¢, is

lcle 2axq(u)

J2a Yiry )

Biry (W) = &y (W) —

and this completes the proof.

Example. If we take a =1, x;(u) = sin(u), ¢; =3
and ¢, = 5 in the ruled surface ¢,,,, we obtain that

1/_1 + geZSin(u) -1
‘/6625”1(“) !
—14 3e?sin(W + 1

,/6eZSin(u)

(plTN(u' 17) = (Sln(u) + U(

arctan (\/ 3e2sin(w) — 1) + v(

+5,0).

)

In the following figure, one see this ruled surface for
@ v) € (0,5) x (=55).

Figure 1. The ruled surface ¢, .
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If the ruling of the ruled surface is the TB-Smarandache
curve yy,(u) of the curve a;(u), then from (2.3) and
(3.1), the ruled surface ¢, (u, v) is parametrized by

(plTB (u! U) = al(u) + leTB (u)
_1+Clezax1(u)
2C1€2ax1(u) '
arctan (w/cleza"l(u) - 1)

=(x;(u) +v

c, + 2
+ 1 v )
V| —7 2 |, —).
V 2¢,e2ax1 (W) V2

The Gaussian curvature and mean curvature of ¢, are
a2C eZaxl
1

G=-
(C1€2ax1 + CLZUZ)Z

and

a’v (av\/clezaxl(u) — Cl\/zclemxl(u) _ 2)
V2 [c,e2a%1() (¢, e20x1 (W) 4 q212)3/2

respectively.

Also,
Theorem 3.2.1.2. i) The ruled surface ¢q,, is not

developable.

ii) The base curve and the striction curve of ¢, .,
coincide.

Proof. From (2.5), the distribution parameter of ¢, is

/ o e2axy (w)

a

61TB -

Since §&,,, cannot be zero, ¢,,, is not developable.
Also, from (2.4) the striction curve is

Birs (W) = ay(u).
So, the proof completes.

Example. If we take a =1, x;(u) = In(uw), ¢; =3
and ¢, = 5 in the ruled surface ¢, we obtain that

_ J-1+3e2n(W)
P1rp (w,v) =(In(uw) +v (%/W >,
arctan(V3e2n@ — 1) + U(

1

6e2ln(w)

v
)+ 5,2).

The following figure shows the graphic of this ruled
surface for (u,v) € (ig 8) X (—14,14).
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Figure 2. The ruled surface Dirp-

Let the ruling curve of the ruled surface be the NB-
Smarandache curve yy,,(w) of a;(u). Thus from (2.3)
and (3.1), the ruled surface ¢,,,(u,v) can be
parametrized by

(plNB (u’ v) = al (u) + leNB (u)

-1

2C1e2ax1(u) ’
arctan (\/clezaxl(u) - 1)

a

V=14 e y

+v —
/cheZaxl(u)

) \/? .
The Gaussian curvature and mean curvature of ¢, are

=W +v

c, +

G=0
and

a (azw/cleza"i(“)vz + 2¢, 200 @ (Jcleza"i(“) + \/iav))

H = s
24/ ¢, e2ax1(w) <2cleza"1(“) + av (2\/5 ¢ e2ax (W) 4 av))

respectively.

Also,
Theorem 3.2.1.3. i) The ruled surface ¢,,, Iis
developable.

i) The base curve and the striction curve of ¢,, . never
intersect.

Proof. From (2.5), the distribution parameter of ¢, _ is
61NB = 0

and so, ¢q,, is developable. Also, from (2.4) the
striction curve By, . (u) on @y, is

\/'E /(:1 e2axy(u)

a

51,\13(”) =a(u) — VlNg(u)

and this completes the proof.

Example. Taking a=1, x(u) = % ¢, =3 and
c; = 5 inthe ruled surface ¢, ,, we get

Davs (w1) = (1/u+v (=),

V3e2/u—1 v
2/u _ —
arctan(\/ 3e 1) +v ( — ) + 5, ﬁ)'

Figure 3 shows the graphic of this ruled surface for
(u,v) € (0.01,100) X (=50,50).

Figure 3. The ruled surface ¢, .

Finally, let the ruling curve of the ruled surface be the
TNB-Smarandache curve y,,, . (u) of the curve a;(u).
Thus from (2.3) and (3.1), the ruled surface ¢, . can
be given by

ngTNB (u! v) = (u) + leTNB (u’)

V=14 ce?axa —1
/3C162ax1(u)
arctan (\/cleZa"l(“) - 1)

a
V—1+ce?axa@ 41\ v
+v —
/3C162ax1(u)

i )

V3
The Gaussian curvature and mean curvature of ¢, .
are

=(xw+v

c, +

a2 CleZax1 (w)
G=-— >
4 (clez‘“‘l(u) + av (\/§ cre?exi(w) 4 av))
and
2a2 Clezaxl(u)v2+ \‘
a
C1e2“"1(u)( /clemxl(u)—\/ia<—2+ }—1+ciez‘“‘1(”))V>/
H=

3/2
42 Clezax1(u)<clezax1(u)+ay(\/§ Clezaxl(u)+av>

respectively.
Also,
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Theorem 3.2.1.4.
developable.

i) The ruled surface ¢,,,, is not

if) The base curve and the striction curve of ¢4, , never
intersect.

Proof. From (2.5), the distribution parameter of ¢, .
is

,(,'16 2axq(u)

2a

61TNB -

and from (2.4), the striction curve B, . (w) on @, . is

\/§ /C1€ 2axq(w)

2a )/1TNB (U)

ﬁlTNB (u) = al(u) -

So, (i) and (ii) are obvious.

Example. If we take a = 1, x;,(u) = In(tan(w)), ¢;
3and c, = 5 in this ruled surface, then we obtain

<p1TNB(u' 17) = (ln(tan(u))

\/_1 + 3ezln(tan(u)) -1
+v ,

ge2in (tan(u))

5 + arctan (\/ 3e2in(tan(w)) — 1)

V=14 3e2nCtan) 4 1\ v

+v ,—=).
\9e2n(tan(w)) \/§)

Figure 4  shows this ruled surface for

7 8T

@v) € (Z,5) x (-1,1).

Figure 4. The ruled surface ¢4, ..

3.2.2. Ruled Surfaces Constructed by the curve
a, (u) and its Smarandache Curves

In this subsection, firstly we construct the ruled surfaces
with the help of the curve a,(u) and its Smarandache
curves. Also, we obtain the mean curvatures, Gaussian
curvatures, distribution parameters and striction curves
for each of these ruled surfaces and give some
characterizations for them.
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Throughout this subsection, the base curves of ruled
surfaces will be taken as the curve a, (u).

If the ruling curve of the ruled surface is the TN-
Smarandache curve y,,, (u) of the curve a,(uw), then
from (2.3) and (3.2), the ruled surface ¢, (u, v) can be
given by

Pary (W, V) = (W) + ¥z, (W)
= (dy - In(cos(dq +ax, (w))) "

v (sin(d1 +axy(u))—cos(d,+axy(w))

A
cos(dq+axy(u))+sin(di+ax; (u))) 0)

xz(u)+v( 7

Since the ruled surface ¢, is a parametrization of a
plane, it is obvious that, the Gaussian curvature and
mean curvature are zero and from (2.5), the distribution
parameter &, of it is zero and so it is developable.

Also,
Theorem 3.2.2.1. The base curve and the striction curve
of ¢, never intersect.

Proof. From (2.4), the striction curve f,,, (W) on ¢,
is

sec(d1 + axz(u))

V2a

ﬁzm(u) =ay(u) - VzTN(u);

which completes the proof.

Example. Taking a = -1, x,(u) = u? d, =3 and
d, = 5 inthe ruled surface ¢, , we get

Pory (W V) =
(5 + In(cos(3 —u?)) + v(

cos(3-u?)+sin(3-u?)
o ) ,0).

sin(3—u2)—cos(3—u2))
\/E )

u2+v(

Figure 5 shows the graphic of this ruled surface for

(w,v) € <\/37—g,\/37+g) X (—=1,1).

h
ik 3 A

Figure 5. The ruled surface ¢,
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If the ruling of the ruled surface is the TB-Smarandache
curve y,,..(u) of a,(u), then from (2.3) and (3.2), the
ruled surface ¢, (u, v) can be given by

(pZTB (ul 7.7) =a; (u) + UVZTB (u)
_ _ In(cos(dq+ax;(w))) sin(di+ax;(u))
= (d, - + v (HRZR0),

cos(d1+ax2(u))) i)
’\/E .

xz(u)+v( 7

The Gaussian curvature and mean curvature of the ruled
surface ¢, are

4a%cos(d, + ax,(w))

G=- (2 + a?v? + a?v?cos(2(d; + ax,(u))))>?

and

_ a?v(av+avcos(2(dq+ax;))—2v2sin(d; +axy))
T VZsec(dq+axy)(2+a2v2+a2v?cos(2(dy +ax,)))3/?’

respectively.

Also,
Theorem 3.2.2.2. i) The ruled surface ¢, is not
developable.

ii) The base curve and the striction curve of ¢, .
coincide.

Proof. From (2.5), the distribution parameter of ¢, is

_sec(d; + ax,(u))
- 2a

2rp
and from (2.4), the striction curve B, (u) on ¢, is
Barp (W) = az(u).
So, we have (i) and (ii).

Example. If we take a =1, x,(u) = u, d; =3 and
d, = 5 in the ruled surface ¢,,,, we obtain that

Q275 W,v) = (5 — In(cos(u+3)) +v (%),
cos(u+3) v
utv(E), 2.
In figure 6, one see this ruled surface for

wv) € (-3-2,-3+2) x (-15,15).
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ST
LT

30 20
Figure 6. The ruled surface ¢,
If the ruling of the ruled surface is the NB-Smarandache

curve y,,,(w) of the curve a,(u), then from (2.3) and
(3.2), the ruled surface ¢,, . (u,v) can be given by

QDZNB (u! U) = a (u) + UVZNB (u’)

_ _In(cos(dy+ax,(w))  (cos(di+axy(w))
=(d, a v ( V2 )'
x,(w) + v (—Sm(dljgxzw))) ,\/—UE ).

The Gaussian curvature and mean curvature of the ruled
surface ¢, , are

and

_ a(4+a?v?+4y2avcos(dq +axy (w))+av?cos(2(dg +axz (w))))

H

4(2+2v2avcos(ds +ax, (w))+a?v2cos?(2(dg+ax; (u))))3/2 '
respectively.

Also,
Theorem 3.2.23. i) The ruled surface ¢,,, Is
developable.

if) The base curve and the striction curve of ¢, . never
intersect.

Proof. From (2.5), the distribution parameter of ¢, is
SZNB = 0.

So, ¢, is developable. Also, from (2.4) the striction
curve B,z (w) on @y, . is

V2sec(dq+axy(u))
a

ﬁZNB(u) = a2(u) - VZNB(u)

and this completes the proof.

Example. Taking a =1, x,(u) = In(u), d; = 3 and
d, = 5 inthe ruled surface ¢,, ., we get

@255 W, v)=(5 — In(cos(In(u) + 3)) —

cos(in(u)+3) sin(in(u)+3) v
() 1y (202 2y
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In the following figure, one see this ruled surface for
(W v) € (e772,e732) x (=5,5).

Figure 7. The ruled surface ¢,,,

Finally, if the ruling of the ruled surface is the TNB-
Smarandache curve y,,. . (u) of the curve a,(u), then
from (2.3) and (3.2), the ruled surface ¢, .(u,v) can
be given by

Po2rns W V) = az(W) + vy, (W)
In(eos(dy+ax,(W)) |

=(d; -
v (sin(d1+ax2(u))—cos(d1+ax2(u))
\/E 1
cos(di+axy(u))+sin(dq+ax(w)\ v
xz(u)+v( = NG = )'\/_g)'

The Gaussian and mean curvatures of the ruled surface
Popyp A€
a’cos(d, + ax,(u))

(2 + a?v? + 2v/3avcos(d; + ax,(w)) +>2
a?v?cos(2(d; + ax,(w)))

G=-—

and
H =
1+ 2v3avcos(d; + ax,(W)) +
¢ a’v? cos (2(d1 + ax, (u))) —VBavsin(d, + ax,(w))
2 + a?v? + 2v3avcos(d; + ax,(W)) + 3/ ’
2 a?v? cos (Z(d1 + axz(u)))

respectively.

Also,
Theorem 3.2.2.4. i) The ruled surface ¢, . is not
developable.

if) The base curve and the striction curve of ¢,
never intersect.

Proof. From (2.5), the distribution parameter of ¢,
is

87

V3sec(d, + ax,(u))
62TNB = 2a

and from (2.4), the striction curve f,., . on the ruled
surface @, Is

V3sec(d;+axa(w))

2a szNB (u)

ﬁzTNB = aZ(u) -
Thus, these equations prove (i) and (ii).
Example. If we take a =1, x,(u) = u, d; =3 and

d, = 5 inthe ruled surface ¢, ., we obtain that

(pZTNB (ut v) =
_ sin(u+3)—cos(u+3)
(5 — In(cos(u +3)) + v (—ﬁ ).
=)
)

cos(u+3)+sin(u+3)
In figure 8, one see this ruled

u+ 'U( 73
@v)e(-3-2,-3+2)x (-1515).

surface for

Figure 8. The ruled surface ¢, .-

4. Conclusion

In the present study, we give some important results for
ruled surfaces constructed by curves with zero ¢-
curvature in Euclidean 3-space with density. We hope
that, this study will help to engineers and geometers
who are dealing with surfaces in Euclidean space with
density and in near future, this study can be tackled in
Minkowski space, Galilean space and etc.
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