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A B S T R A C T   

In this study, ZnO (zinc oxide) nanoparticle production was performed. Heat transfer coefficients (h) were 
measured for Ethylene Glycol Based ZnO nanofluids that were produced using pure water, ethanol, and ethylene 
glycol materials. In the literature, this is the first study in which Nanofluid was produced and experimental 
results were estimated by using LSTM and CNN-LSTM deep learning models. The study graphs’ show the rela-
tionship between heat transfer coefficients. Besides, Reynolds numbers were drawn and predictive models were 
created by using the LSTM and CNN-LSTM deep learning models for h values of nanofluids. In addition, the deep 
learning architecture that predicts the effects of the magnetic effect on the heat transfer coefficient has been 
introduced to the literature as an innovation. The results showed that the heat transfer coefficients can be 
estimated with the LSTM and CNN-LSTM deep learning model with an average error of 0.7342% and 0.2001% 
respectively. In addition, the relative error of the heat transfer coefficients as a result of the magnetic effect was 
determined as 0.02944 and 0.01701, respectively, with the same methods and model. Applying the magnetic 
effect to the system, an irregularity was observed in the flow and as a result of increased heat transfer, the friction 
on the pipe wall increased. The importance of the study is modeling the heat transfer coefficient values 
depending on the different pH values that were used during the synthesis of ZnO nanomaterial and observing the 
effects of the magnetic effect on the system.   

Introduction 

In our daily life, we encounter the flow in circular and non-circular 
pipes. The hot and cold water we use in our homes is pumped through 
the pipes. City water is distributed with an expensive pipe network. Oil 
and natural gas are transported by hundreds of kilometers of pipelines. 
The cooling water in the engine is transported to the pipes in the radiator 
which is cooled while flowing through the hoses by means of hoses. Most 
fluids, especially liquids, are transported by circular pipes [1]. Energy 
transfer through heat is a key process in several daily life applications 
and industrial processes. One of the most crucial daily life need is energy 
demand that is increasing day by day. Fossil fuel’s actual energy sources 
are rapidly consumed. For this reason, it is very important to innovate 
existing energy conversion systems and to develop new methodologies 
for gaining more benefits from existing limited energy resources [2]. 
With the development of nanotechnology, we can produce nano-
materials that could be added to fluids to enhance their properties. 
There are many different techniques for producing nanoparticles such as 

chemical vapor condensation, microemulsion, hydrothermal technique, 
gas-phase production technique, and inert gas condensation technique 
[3]. By incorporating the nanoparticles into the working fluid, the per-
formance of heat transfer is significantly improved [4]. Nanoparticles, 
nanofibres, nanotubes, and other nanomaterials are produced primarily 
as dry powder by physical methods or chemical methods. Then, these 
nano-sized powders are dispersed in water, the basic fluid. To stabilize 
the particles in the fluid and to obtain a homogenous distribution, the 
processes such as magnetic mixing, ultrasonic mixing, high shear mixing 
are applied [5]. 

Adding nanoparticles in the fluids changes the thermophysical 
properties of these nanofluids resulting in improve heat transfer, 
therefore the correct measurement of these nanofluid properties is 
important [6]. Many different studies have been carried out in the 
literature on this subject. Colangelo et al. produced different nanofluids 
in their study [6]. They stated that the low thermal conductivity fluids 
used in the production increase the thermal conductivity of the nano-
fluids they use. In 2001, Eastman et al. measured the thermal 
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conductivity of the nanofluids produced at concentrations between 
0.01% and 3.0% and found that the hot oil, which is the basic fluid, 
exhibited much more thermal performance than water by using CuO, 
Al2O3, ZnO, and Cu particles [7]. Prajapati and Rohatgi used an ultra-
sonic vibration mixer in their work and, prepared ZnO-water nanofluids 
with a volume concentration ranging from 0.0001% to 0.1%. They also 
used the thermal properties analyzer to calculate the thermal conduc-
tivity of ZnO-water nanofluids. They achieved a maximum thermal 
conductivity value in a pressure range of 1–2.5 bar and a heat flow of 
0–400 kW/m2 at a constant mass flow rate of 400 kg/m2. As a result, 
they showed that the heat transfer coefficient increased with increasing 
pressure and ZnO concentration [8]. 

The heat transfer applications depend on the thermophysical prop-
erties of nanofluids. Thermophysical properties are determined by 
different parameters such as specific heat capacity, viscosity, thermal 
conductivity, and heat transfer coefficients. The heat transferability of a 
nanofluid is well analyzed by the heat transfer coefficient [9]. Nguyen 
has studied the effect of particle size on the viscosity of the nanofluid 
with the composition of aluminum water. The study shows that the same 
results were obtained for particles with 36 and 47 nm in a 4% volumetric 
ratio. They also observed that the viscosity of the fluid increases with the 
increase in particle size [10]. Yadav and Sahu studied the effect of he-
lical surface disc turbulators on the heat transfer properties of a double 
tube heat exchanger. They developed correlations for Nusselt number 
and thermal performance factor for Reynolds number varying between 
3500 and 10.500 [11]. 

It is well known that solid metals have higher conductivity than 
fluids therefore the addition of solid nanoparticles into the fluids in-
creases the thermal conductivity of the fluids [12]. Xie et al. have 
investigated the particle size effects on the thermal conductivity of the 
nanofluid by introducing the non-oxide ceramic nanofluid (SiC) of the 
particle size from 26 to 600 nm and aluminum oxide Al2O3 nanoparticles 
with the size range from 1.2 to 3.02 nm into the nanofluid [13]. 

In Table 1, studies in the literature on heat transfer enhancements of 
nanofluids are given. These studies are shown according to basic fluids, 
nanoparticle type, volumetric ratio, nanofluid transition pipe properties, 
flow regime, and Reynolds number. 

In today’s experimental studies, many data are obtained and neces-
sary calculations are made on these data. Computational intelligence 
methods have been developed to facilitate data processing. A large 

number of data is easily processed with these methods. In this study, the 
modeling of the data obtained by applying the magnetic field effect of 
the heat transfer property of nanofluid by using two deep learning ar-
chitectures (CNN and CNN-LSTM) that has been investigated. In the 
study, we synthesized ZnO nanoparticles of various particle sizes and 
Scanning Electron Microscopic (SEM) images were used to verify the 
size and morphology of these particles. These nanoparticles were used to 
prepare nanofluids by mixing them with water, ethanol, and ethylene 
glycol, and then a nanofluid was obtained, which was used in the 
experimental setup to determine the heat transfer coefficients of these 
fluids. A prediction model was created using LSTM and CNN algorithms 
for the heat transfer coefficients obtained for ZnO in the experimental 
setup where the magnetic field effect was applied. In these predictive 
models, the error values are analyzed and compared to find the best 
predictive model for the heat transfer properties of the nanofluid. In our 
study, the effect of magnetic field on heat transfer of nanofluids was 
investigated as an innovation, and the results obtained with the deep 
learning method, which was used for the first time in studies in this field, 
were predicted. 

Materials and methods used in the study 

In our research, the heat transfer coefficient values were determined 
experimentally by applying the magnetic field effect for various nano-
fluids prepared at different pH values. Based on these experimental data, 
different deep learning architectures such as LSTM and CNN-LSTM were 
used to estimate heat transfer coefficient values. In this section, detailed 
information and explanations about nanofluid production, uncertainty 
analysis, SEM analysis, heat transfer in nanofluids and deep learning 
architecture and modeling data are given. 

Production of nanofluids and obtaining heat transfer coefficients with the 
experimental setup 

In the production of nanomaterial, the Chemical Mixing method, 
which is a method of converting the substance into an insoluble form or 
changing the composition of the solvent to reduce its solubility in the 
substance, is used [14]. In ZnO particle production, 2.20 g (0.01 mol) 
Zinc Acetate was dissolved in 50 ml ethanol solvent for 15 min using the 
magnetic stirrer. After that 4 g (0.1 mol) NaOH (Sodium Hydroxide) and 

Table 1 
Literature summary of studies on heat transfer of nanofluids.  

References Basic 
fluid 

Particles Particle 
size 

Volumetric ratio of 
particle(%) 

Circular Pipe 
Dimensions 

Flow regime, 
Reynolds Number 

Result 

Pak and Cho  
[14] 

Water g-Al2O3 

TiO2 

13 nm 
27 nm 

1–3 
1–3 

1.066 cm 
diameter 
480 cm length 
Brass Pipe 

104 < Re < 205 
(Laminar) 

Increased volumetric rate of nanoparticles and the 
number of Re has increased heat transfer. 

Xuan and Li  
[15] 

Water Cu <100 nm 0.3,0.5,0.8,1, 1.2, 
1.5, 2 

10 mm diameter 
800 cm length 
Brass Pipe 

10000 < Re < 25000 
(Turbulence) 

Increased volumetric rate of nanoparticles and the 
value of the flow rate has increased heat transfer. 

Xuan and Li  
[16] 

Water Cu 26 nm 0.5, 1, 1.5, 2 1.29 mm 
diameter 
Copper Pipe 

200 < Re < 2000 
(Laminar) 

Heat transfer at the 2% volumetric ratio of Cu 
nanoparticle increased 39%.  

Zhou [17] Acetone Cu 80- 
100nm 

0.1–0.4 16 mm 
diameter 
200 mm 
length 
Copper pipe 

200<Re<1800 
(Laminar) 

The heat transfer coefficient increased with the increase in the 
percentageof nanoparticles (CuO). 

Williams and 
friends [18] 

Water ZrO2 46nm 0.9–3.6 
0.2–0.9 

1.27cm 
diameter 
1.65 mm 
length 
Copper pipe 

9000<Re<63000 The heat transfer coefficient increased with the increase in the 
percentage of nanoparticles (ZrO2). 

Sajadi and Kazemi 
[19] 

Water TiO2 30nm 0.05,0.1,0.15, 
0.20, 0.25 

1.40mm 
diameter 
Copper Pipe 

500< Re<3000 
(Laminar) 

The heat transfer coefficient increased with the increase in the 
percentageof nanoparticles (TiO2).  
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100 ml of pure water were added to the mixture and further dissolved by 
using an ultrasonic bath for a time period of 15 min. The dissolved Zinc 
Acetate and NaOH mixtures were mixed together and stirred using a 
magnetic stirrer for an hour. The pH ratios for different solutions were 
adjusted by adding an appropriate amount of ammonia solution into the 
mixtures. 

The nanoparticles were obtained by precipitating the mixture for 
approximately 20 h. The precipitated particles were filtered and rinsed 
with pure water and ethanol several times to remove any impurities 
from the solution. The washed powder was then dried at 55 ◦C to remove 
any remaining moisture from it. The white nanoparticle powder was 
heat-treated at 460 ◦C for 1 h. Finally, the successful production of ZnO 
nanoparticles was confirmed through the SEM images. 

For nanofluid production, the Two-Step method most commonly 
used in the literature was applied [15]. In the Two-Step method, 
nanoparticles, nanofibers, nanotubes, and other nanomaterials were 
first produced as particles in dry powder form by using chemical or 
physical methods. As a second step, these nano-sized powders were 
dispersed in the base fluid. Ultrasonic mixing was performed in order to 
obtain a homogenous distribution by stabilizing the particles in this 
mixture [16]. After the successful production of the ZnO nanoparticles, 
the next step is to prepare the nanofluid from the obtained nano-
particles. For this purpose, the various amounts of nanopowder (0.1%, 
0.2%, and 0.3%) were mixed with a solution of 56.9% Pure Water, 
28.9% Ethylene Glycol and 14.2% Ethanol and were stirred 50 min ul-
trasonically to get homogenous and stable nanofluid. 

The formed nanofluids are ready for use in the experimental setup, 
but before using these nanofluids, the density of the nanofluids was 
determined. The experiments were performed for the produced nano-
fluids and five different Reynold values were calculated. In our experi-
ment, the temperature values of the fluid were measured regularly with 
5 min time interval. The temperature readings were taken by attaching 
four thermocouples placed equidistance from each other at the pipe 
surface and the readings were started after the stable temperature was 
obtained. From these experimental values, the heat conduction coeffi-
cient and heat transfer coefficients were calculated. 

Fig. 1 shows the experimental setup for the calculation of the heat 
transfer coefficient. The figure shows a control valve that is used to 
control the flow rate of the nanofluid. The temperature readings were 
measured to determine the heat transfer properties of the fluid from the 
copper pipe surface with laminar fluid flow and in order to reduce the 
experimental error, four thermocouples were placed on the pipe. By 
using the thermometers at both ends, the inlet and outlet temperatures 
of the nanofluid were measured. The flow meter shows the volumetric 

flow rate of the nanofluid. 
1-Fluid pump, 2- T Connection, 3-Heat Tape, 4-Copper pipe, 5-Plastic 

pipe, 6- Electronic flow meter sensor, 7-Electronic flow meter, 8-Fluid 
reservoir, 9-Flow regulating valve, 10-Fluid Thermometer, 11-Thermo-
couple, 12-Manometer, and 13- Coil 

Uncertainty analysis 

The uncertainty analysis was performed for the measurements and 
for the calculations we made. Temperature and volumetric flow mea-
surements were performed in the experimental study. Reynolds number 
(Re) and heat transfer coefficient (h) were calculated from these mea-
surements. The uncertainty analysis values of the measurements used 
for the calculations which were based on the method determined by 
Kline and McClintock [17]. In measuring the value of a parameter, the 
total error calculation can be calculated as in Eq. (1) by taking into 
account the errors caused by fixed errors, random errors, and 
manufacturing errors [18]. 

wx = [(x1)
2
+ (x2)

2
+ ........+ (x2

∞)]
1/2

(1) 

The uncertainty analysis calculated for various parameters is shown 
in Table 2. 

Scanning electron microscope (SEM) analysis 

The SEM images are typically taken by focusing a beam of electrons 
having energy from 200 to 300 eV to 100 keV. The electron beam is 
focused by using electromagnetic lenses onto the target surface and in-
teracts with the surface. The secondary electrons emerging from the 
depth of about 10 nm from the sample surface with 50 eV typical en-
ergies are collected to form an image [19]. The SEM images were taken 
by using the JEOL SM-7001F Field Emission SEM. The images in Fig. 2 
show the morphology of different nanoparticles obtained using the 
participation method at different pH values. 

According to the electron microscopic images, it is clear from 
morphology and the dimensions of these particles that the ZnO nano-
particles were formed successfully. The particles with a size ranging 
equal to or <100 nm are considered nanoscale materials and thus forms 
the basis of nanotechnology [20]. ZnO nanofluids with different crys-
tallite sizes (164, 60.9, 33,47.8, 121 and 123 nm) have been prepared by 
chemical route using a different solvent. SEM image shows that 164 nm 
crystallite size particles are of rod shape whereas 60.9 nm crystallite size 
are elliptical shape particles. 33 and 47.8 nm size particles are almost 
spherical aggregates whereas 121 and 123 nm crystallite size particles 
show the mixed shapes of spherical as well as elongated rod shape 
particles. The change in morphology is due to the different reaction rates 
of solvents used in the reaction to produce ZnO nanoparticles [21]. 

The morphological structure of our materials, i.e. the size of the 
nanoparticles we produce to prepare the nanofluids, is effective on heat 
transfer of nanofluids, heat conduction, viscosity, and many thermo-
physical properties. The change in the morphology of the ZnO nano-
particles is due to its pH value. When the pH value increases, the heat 
transfer decreases and when the pH value decreases, the round grains 
turn into a rod shape. 

Fig. 1. The experimental setup.  

Table 2 
Uncertainty values.  

Parameter Uncertainty results (%) 

Temperature measurements ±%3.2 
Mass and time measurements ±%1.1 
Uncertainty resulting from differences in pipe length ±%1 
Uncertainty caused by differences in pipe diameter ±%1 
Uncertainty of Physical Properties (Viscosity and Density) ±%1 
The uncertainty in the Reynolds number ±%2.75 
Uncertainty of heat transfer coefficient ±%4.55  
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Heat transfer in nanofluids 

The energy is transferred between different environments and ob-
jects which are at different temperatures. The transfer of energy is 
referred to as energy transmission when it happens between the sta-
tionary solid or fluid, whereas the term transport is utilized when the 
heat transfer occurs between the surfaces and fluids in motion at 
different temperatures. The surfaces emit their energy in the form of 
electromagnetic waves at finite temperature. The heat exchange be-
tween the surfaces without any direct contact is called radiation [22]. 
Effective thermal conductivity not only depends on the inherited ther-
mal conductivity value of the materials but also on the porosity or vol-
ume fraction of the medium. The studies have shown in both laminar 
and turbulent flow conditions, the heat transfer coefficient of nanofluids 
and the thermal conductivity value is greater than the heat transfer 
properties of pure water. 

Newton described the basic law of cooling for the transport of heat 

energy before Fourier’s transmission law of energy. The heat transfer 
coefficient can be calculated from fundamental Eq. (2) which is given 
below. 

Q = hA
(
Tw − Tf

)
(2) 

In this relationship, Q represents the amount of heat energy transfer 
between the walls and liquid flowing through the copper tube and A is 
the common surface area between them. Whereas Tw is the average 
surface temperature and Tf is the average temperature of both ends (in & 
out) of the copper tubing [23]. 

The Reynolds number at which the flow becomes turbulent is called 
the Critical Reynolds number Recr. The value of the Critical Reynolds 
number varies for different geometries and flow conditions. The 
generally accepted value of the Critical Reynolds number for internal 
flow in a circular pipe is Recr = 2300. We want to know the exact values 
of the Reynolds number for laminar, transitional and turbulent flows. 
But in practice it is not so easy to determine the exact values. In most 

Fig. 2. SEM image of ZnO (A: at pH 7,7, B: at pH 8,7, C: at pH 8,5, D: at pH 9,9).  
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practical applications the flow in circular pipes is laminar for Re ≤ 2300. 
For Re ≥ 4000 the flow is turbulent and at Reynolds number values 
between these two values (2300 ≤ Re ≤ 4000) the flow becomes a 
transitional flow. In circular pipes; Nusselt number is constant in 
laminar flow, constant surface heat flux (qs = constant), and fully 
developed flow conditions; It does not depend on Reynolds or Prandtl 
numbers [23]. Considering this situation in the literature, Reynolds 
number was made between 800 and 2300 in our study. The reason for 
this is to facilitate the determination of the heat transfer coefficient 
when needed. 

Nu =
hD
k

= 4.36 (3) 

The magnetic field is calculated using the magnetic field density β 
(Wb/m2) applied along the pipe, magnetic field intensity H (A/m), 
number of turns in N coil, I current, ℓconductor length and µ magnetic 
permeability coefficients. The formula in Equation (4) is used for 
calculation. 

H =
NI
ℓ , β = μH (4)  

Modeling data with deep learning architecture 

The Deep Learning Architecture (DLA) is a subcategory of Machine 
Learning (ML). A deep neural network is a different neural network 
model with neurons having a lot of parameters and layers in between the 
layer of input and output. Deep learning is considered as the modern 
architecture of neural networks. DLA provides automatic learning of 
features. It also provides feature representation in a hierarchical manner 
at different levels. This powerful learning process makes DLA more 
robust and reliable, unlike machine learning methods. In short, DLA is 
used with high performance for feature extraction and alteration pro-
cess. In DLA, simple processing procedures of input data and learning 
easy features are performed in the initial layers. The outputs of the 
initial layers are given as input for the upper layers that can learn more 
complex features. Therefore, deep learning is more suitable for complex 
problems with large data. Areas such as image classification, video 
analysis, speech recognition and natural language learning can be given 
as examples of the usage areas of DLA [24–26]. 

In this study, a prediction model has been developed for the calcu-
lated heat transfer coefficient of the nanofluid by using convolutional 
neural networks in the first phase and convolutional neural network and 
LSTM architecture in the second phase. According to the prediction 
accuracy, it was observed that the approach in the second phase was 
more successful than the model in the first phase. To the best of our 
knowledge, the developed model in this study is the first on this subject 
in the literature. 

Long-short term memory 

Long-Short Term Memory (LSTM) is a more developed version of 
recurrent neural networks (RNNs). RNN architectures have an approach 
based on previous knowledge usage. Therefore, RNNs do not only 
handle the input instances that have entered the network, but also the 
input instances within the input previously. In traditional neural net-
works, input data is given to the network independently. However, the 
situation is different in RNN architecture. Besides, in RNNs, the output 
of each data in the array is calculated with previous values. RNNs are a 
class of neural networks in which connections between units form a 
directed loop [27]. Recurrent neural networks, unlike feedforward 
neural networks, can use input memory to process random input se-
quences [28]. The main idea here is to use sequential information. 
However, the vanishing gradient problem arises in RNN architectures. 
when the gap between contexts increases, it becomes difficult to use 
information from the past, which causes this problem to arise. 

Therefore, a modified LSTM has been proposed to solve this problem 
[29]. Basically, LSTM architecture consists of three gates, namely input, 
forget and output gate. The cell remembers values in arbitrary time in-
tervals and these three gates adjust the flow of information in and out of 
the cell. The output of the block is repeatedly linked to the entrance of 
the block and all its gates. LSTM networks are well suited to classify, 
process and make predictions on data such as time series. A general 
structure of the LSTM architecture is given in Fig. 3. 

LSTM deep learning architecture is used in many areas based on 
letters. Speech recognition [30], text generation [31], music composi-
tion [32] can be given as examples to these areas. However, in addition 
to these areas, LSTM architecture is used in many areas such as 
biomedical signal processing [33,34], bioinformatics [35,36] and cyber- 
attack detection [37]. The accuracy rate of the LSTM deep learning ar-
chitecture in the classification area also guided the prediction studies. 
There are studies such as forecasting tourism flow with LSTM deep 
learning model [38], forecasting stock prices [39], forecasting e-com-
merce time series [40], forecasting natural gas prices and movement 
[41]. When these studies were examined in detail, it was seen that LSTM 
performed an effective estimating process. Due to this prediction success 
of the LSTM method in the literature, it was thought to be useful to 
develop an estimation model with LSTM for heat transfer coefficient 
estimation of nanofluids containing ZnO. In this study, the LSTM deep 
learning model was used, the heat transfer change of ZnO nanofluids and 
the heat transfer changes due to the magnetic field were estimated and 
compared with the experimental results. LSTM deep learning model was 
modeled as sixteen inputs and one output in the system. Reynolds 
number (Re), fluid volume (ml), time (sec), flow rate (lt/sec), velocity 
(m/sec), surface heat flux (ya), pipe diameter (m), heat for the fluid (Tin, 
Tout, Tavg1, T1, T2, T3, T4, Tavg2), and Conduction coefficient (k) used in 
the experiments are taken as input information. The heat transfer co-
efficient (h) of nanofluids was used as output information. The designed 
LSTM deep learning model is given in Fig. 4. 

As can be understood from Fig. 4, the designed LSTM model consists 
of an input layer, two LSTM layers and one output layer. The parameters 

Fig. 3. General structure of LSTM architecture. (a) forget gate, (b) peephole, 
and (c) LSTM block. 
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of the designed LSTM model were determined by trial and error 
approach and the parameters that perform the best estimation process 
were selected. The parameters can be given as follows;  

• A total of 16 inputs were used in the input layer.  
• Then, the LSTM layer was defined in the second layer and 64 LSTM 

units were used in total. ReLU was preferred as the activation 
function.  

• In the 3rd layer, the LSTM layer was evaluated again and 32 LSTM 
units were preferred this time. ReLU was used again as the activation 
function in this layer.  

• In the last layer, a fully connected layer consisting of 1000 neurons 
was designed and the estimation process was performed. A total of 
1000 estimation procedures were performed using 1000 neurons, 
and the estimation result was determined by considering the average 
value.  

• The Adam function was used as an optimization function. Here, the 
learning rate was chosen as 0.01.  

• The loss of the system was calculated with the mean square error.  
• All these operations were carried out with 1000 epoch values. 

Convolutional neural network with LSTM model 

CNN is a deep learning algorithm that is often used in image pro-
cessing and takes images as input. CNN, which captures the features in 
images with different operations and classifies them, consists of different 
layers. These layers are input, convolutional, pooling, fully-connected, 
and output layers. Images are brought into a state that can enter the 
deep learning model by passing through these layers. Since we are 
dealing with unstructured data while creating CNN models, there is not 
much effort in data pre-processing according to classical machine 
learning algorithms. 

In the CNN algorithm, information that is in the input layer is pro-
cessed with feature extraction and transformation in the convolution 
and pooling layers. The local information of the pooling and convolution 
layers here, are integrated by the fully-connected layers and mapped to 
the output signals via the output layer. CNN algorithm is used in many 
fields such as natural language processing and biomedical, especially 
image and sound processing [42]. A general working diagram showing 

the layers of the CNN algorithm is given in Fig. 5. 
As can be seen from Fig. 5, the designed CNN-LSTM model consists of 

an input layer, a CNN layer, an LSTM layer, and an output layer. The 
parameters of the designed CNN - LSTM model were determined by trial 
and error approach and the parameters that perform the best estimation 
process were selected. The parameters can be given as follows;  

• There are a total of 16 entrances in the entry layer.  
• In the second layer, the CNN layer is defined and a total of 64 CNN 

units are used. ReLU was preferred as the activation function. Max- 
pooling and flatten structures were used. With max-pooling, it is 
aimed to reduce the number of calculations and use smaller outputs 
containing enough information for the neural network to make the 
right decision. It was aimed to prepare the data with Flatten and 50 
LSTM units were used and ReLU was chosen as the activation 
function.  

• In the last layer, a fully connected layer consisting of 500 neurons 
was designed and the estimation process was performed. A total of 
500 estimation procedures were performed using 500 neurons, and 

Fig. 4. Structure of the designed LSTM model.  

Fig. 5. Structure of the designed CNN-LSTM model.  
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the estimation result was determined by considering the average 
value.  

• The Adam function was used as an optimization function. The 
learning rate was chosen as 0.01.  

• The loss of the system was calculated with the mean square error.  
• All these operations were carried out with 500 epoch values. 

The main purpose of our study is to estimate the heat transfer co-
efficients according to different Reynolds values rather than classifica-
tion using the deep learning model. Since no classification process was 
performed in our research, the data were not separated as training and 
test data. Hence accuracy, precision, recall, ROC, etc. evaluation 
matrices were not calculated. In addition, no cross-validation was per-
formed in the study. Because operations such as cross-validation, sepa-
ration of training, and test data are the methods used in the classification 
process. Similar approaches were used in other studies in the literature, 
and cross-validation, holdout-validation, etc. were not used in these 
studies [43–45]. 

The formula and parameters of root mean squared error (RMSE), 
relative absolute error (RAE) and root relative absolute error (RRAE) 
analyzes were used to determine the accuracy rates of computational 
intelligence methods which are shown in Table 3. 

Results and discussion 

In this study, the heat transfer coefficient of ethylene glycol-based 
ZnO nanofluids that were obtained at various pH values was calcu-
lated and it was found that the heat transfer coefficient value for various 
prepared nanofluids increased with Reynold’s number between 800 and 
2300. Then, the magnetic field effect on nanofluids was investigated by 
creating a magnetic field in the experimental setup. Fig. 6 shows the 
inverse relationship between the heat transfer coefficient and the pH 
value. When producing nanomaterials, a mixture of 25% NH3 and 75% 

water is used to adjust the pH during the production of ZnO nano-
particles. As a result, the specific heat of the liquid is adversely affected 
as the pH level rises. As can be seen in Fig. 6, it has been observed that 
the heat transfer increases with the increase of the pH rate as a result of 
the magnetic field effect. The reason for this, that can be said as the 
decrease in the nanoparticle ratio in the fluid with the increase of pH, 
the specific heat of the liquid is adversely affected as the pH level in-
creases, and the flow is seen closer to the pipe wall where the flow be-
comes irregular with the effect of the magnetic field. 

When Fig. 6 is examined; It was concluded that the heat transfer was 
negatively affected by the effect of the magnetic field, because the tube 
type and nanoparticle type were effective. The error rates of predicted 
LSTM and CNN-LSTM models that were created for heat transfer co-
efficients of ZnO nanofluids were shown in Table 4. 

When Fig. 7 is examined, it is observed that there is no significant 
change in heat transfer as a result of the magnetic field effect with the 
increase of the nanoparticle ratio. The error rates of predicted LSTM and 
CNN-LSTM models that were created for heat transfer coefficients of 
ZnO heat transfer coefficients were shown in Table 5. 

Recently, computational intelligence methods have been used in 
almost every field. Obtaining a predictive model of a situation in 
different methods is important for features such as design, innovation, 
production, and development. There are many valuable studies in the 
literature in order to create a predictive model of thermophysical 
properties of nanofluids using computational intelligence methods. In 
the literature, to create a predictive model of various nanofluids ther-
mophysical properties different studies have been performed by using 
support vector regression (SVR), multi-layer perceptron (MLP), genetic 
algorithm-radial base function (GA-RBF), artificial neural network 
(ANN), decision tree (DT) and support vector machine (SVM). These 
studies are shown in Table 6. 

Table 3 
The Criteria of Accuracy and Formulas.  

The Criteria Formulas Parameters 

RMSE ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(P1 − A1)2
+ .....+ (Pn − An)2

n

√ P: Predicted result 
A: Actual result 
n: Total Estimated result 

RAE |P1 − A1| + .....+ |Pn − An|
|A1 − A′

| + .....+ |An − A′
|

P: Predicted result 
A:Actual result 
A’: Average of Actual results 

RRAE ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(P1 − A1)2

+ ..... + (Pn − An)2

(|A1 − A′
| )

2
+ ..... + (An − A′

)
2

√ P: Predicted result 
A: Actual result 
A’: Average of Actual results  

Fig. 6. Evaluation of the change of heat transfer coefficient values obtained for 
ZnO pH values according to Reynolds number. 

Table 4 
Error rates.  

Deep learning algorithms RMSE RAE RRAE 

LSTM  0.7342  0.2940  0.2606 
CNN-LSTM  0.2001  0.0621  0.0710  

Fig. 7. Investigation of the heat transfer coefficient change as a result of 
magnetic field effect by increasing the ZnO nanoparticle ratio according to 
Reynolds number. 

Table 5 
The error rates are the result of the ZnO heat transfer coefficients obtained as a 
result of the magnetic field effect.  

Deep learning algorithms RMSE RAE RRAE 

LSTM  0.02944  0.08861  0.09694 
CNN-LSTM  0.01701  0.04740  0.05600  
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Table 6 shows the nanofluids type, thermophysical properties, the 
number of data, the predictive method, the type of error analysis and the 
results of the error analysis. It shows the data from some of the previous 
studies and the error analysis along with the methods used for the 
computation. The results of RMSE error analysis for our studies to 

estimate the heat coefficient have less error compare to these studies. 
The change in the heat transfer of nanofluids containing ZnO with pH 
and Reynolds values is shown in Table 7. These results are obtained as 
experimental results. The heat transfer values according to the Reynolds 
number of ZnO nanofluids at different pH after the effect of magnetic 
field is applied to the system are given in Table 8. 

According to Table 9, heat transfer increased as Reynolds value 
increased, and heat transfer decreased as pH increased. Table 9 shows 
the estimated results obtained according to the LSTM deep learning 
architecture given in Fig. 4. These results show the direct result of the 
codes generated in the Python programming language. There is no 
margin of error. Considering the deviations in the experiment, it can be 
assumed that the results here are satisfactory. 

According to Table 10, heat transfer increased as the Reynolds value 

increased, and as a result of the magnetic field effect, it was observed 
that the heat transfer increased as the pH increased. Table 10 shows the 
estimated results obtained according to the LSTM deep learning archi-
tecture given in Fig. 4. These results show the direct result of the codes 
generated in the Python programming language. There is no margin of 

Table 6 
Prediction models of thermophysical properties of nanofluids in the literature.  

Nanofluids Thermo-physical properties Number of Data Method Error Analysis Error Analysis Result Reference 

Al2O3, TiO2 ,CuO, SiO2 Heat transfer coefficient 274 SVR RMSE  1.11 (Alade et al. 2018) [46]. 
Al2O3, SiO2, TiO2, CuO-water Viscosity 3144 MLP RMSE  0.1 (Hemmati-Sarapardeh et al. 2019) [47]. 
TiO2 / SAE 50 nano-lubricant Viscosity 174 GA- 

RBF 
RMSE  0.58 (Esfe et al.2018) [48]. 

MWCNTs/ water Viscosity 268 ANN MSE  0.28 (Afrand et al.2016) [49]. 
Al2O3/EG Heat transfer coefficient 154 SVM MSE  8.6x 10-5 (Ahmadi et al. 2019) [50]. 
Fe2O3/water Heat transfer coefficient 84 MLP RMSE  0.348 (Ahmadi et al. 2018) [51].  

Table 7 
Change of heat transfer values (Experimental).  

Reynolds ZnO 
pH:7.8 

ZnO 
pH:8.5 

ZnO 
pH:8.7 

ZnO 
pH:9.9 

33% 
Ethylene 
Glycol +
67% Pure 
Water 

Pure 
Water 

Heat transfer coefficient (h,W/m2K) 

880 359.42 357.24 355.11 348.79 311.05 308.61 
1385 363.86 361.63 358.33 356.16 336.83 333.97 
1614 364.98 364.12 363.86 361.63 342.70 340.72 
1957 367.26 366.12 364.98 362.74 348.79 345.72 
2240 375.45 369.56 367.26 364.98 355.11 352.96  

Table 8 
Change of heat transfer values (Experimental) for heat transfer values obtained as a result of ZnO magnetic field effect.  

Reynolds ZnO pH: 7.8 ZnO pH:8.5 ZnO pH:8.7 ZnO pH:9.9 
%0.1 

ZnO pH:9.9 
%0.2 

ZnO pH:9.9 
%0.3 

33% Ethylene Glycol + 67% Pure Water Pure Water 

Heat transfer coefficient (h,W/m2K) 

880 327.47 348.78 349.81 351.80 351.49 350.86 311.05 308.61 
1385 331.76 352.33 353.43 355.26 352.62 350.92 336.82 333.96 
1614 332.88 353.90 354.82 356.16 353.76 351.13 342.70 340.72 
1957 335.12 356.37 357.53 359.42 355.83 351.49 348.78 345.71 
2240 338.76 359.96 361.45 362.29 357.24 351.90 355.08 352.96  

Table 10 
Change of heat transfer values (Estimated with LSTM) according to the magnetic field effect.  

Re ZnO pH: 7.8 ZnO pH:8.5 ZnO 8.7 ZnO pH:9.9 
%0.1 

ZnO pH:9.9 
%0.2 

ZnO pH:9.9 
%0.3 

33% Ethylene Glycol + 67% Pure Water Pure Water 

Heat transfer Coefficient (h,W/m2K) 

880 325.71 346.75 351.52 351.83 351.47 349.67 311.22 308.62 
1385 331.10 352.45 355.63 355.23 352.62 352.79 336.78 334.59 
1614 332.89 353.48 354.92 355.77 351.99 352.69 340.57 342.92 
1957 335.10 356.70 357.56 359.54 355.78 353.52 346.52 345.74 
2240 337.68 358.01 360.96 364.15 357.41 352.67 355.11 353.03  

Table 9 
Change of heat transfer values (Estimated with LSTM).  

Re ZnO 
pH:7.8 

ZnO 
pH:8.5 

ZnO 
pH:8.7 

ZnO 
pH:9.9 

33% Ethylene 
Glycol + 67% 
Pure Water 

Pure 
Water 

Heat transfer coefficient (h,W/m2K) 

880 366.23 357.32 357.22 341.41 310.53 316.75 
1385 368.19 357.78 361.43 349.31 340.49 338.53 
1614 368.34 366.53 367.99 365.71 340.81 342.65 
1957 365.21 368.82 362.73 362.37 354.88 344.10 
2240 374.54 369.85 369.97 369.78 352.44 358.90  

Table 11 
Change of heat transfer values (Estimated with CNN-LSTM).  

Re ZnO 
pH:7.8 

ZnO 
pH:8.5 

ZnO 
pH:8.7 

ZnO 
pH:9.9 

33% Ethylene 
Glycol + 67% 
Pure Water 

Pure 
Water 

Heat transfer Coefficient (h,W/m2K) 

880 360.55 357.29 354.01 352.611 311.20 308.97 
1385 363.95 361.80 358.48 355.99 338.95 334.39 
1614 366.62 363.98 363.59 361.33 341.19 340.66 
1957 368.02 366.32 364.63 362.74 348.09 344.36 
2240 377.48 369.64 367.97 364.74 355.64 352.15  
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error. Given the deviations in the experiment, it can be assumed that the 
results here are satisfactory. 

Tables 11 and 12 shows the estimated results obtained according to 
the CNN-LSTM deep learning architecture given in Fig. 5. These results 
show the direct result of the codes generated in the Python programming 
language. There is no margin of error. Considering the deviations in the 
experiment, it can be assumed that the results here are satisfactory. The 
results are almost 0% inaccurate and match the actual values. 

The relative errors of the estimation results and experimental results 
obtained with the LSTM model are given in Tables 13 and 14. The 
relative errors of the estimation results and experimental results ob-
tained with the CNN-LSTM model are given in Tables 15 and 16. There is 
a margin of error of approximately ± 4.5 in the results obtained with the 
experimental results. When the experimental results were reflected in 
this margin of error, it was seen that the difference between the esti-
mated results and the experimental results almost %0. Because the 
biggest error with LSTM is 2.6409% and with CNN-LSTM the biggest 
error is 1.0984%. Considering the margin of error in the experimental 
values, it is clear that the predictive results are extremely successful. 

Figs. 8–10 shows a comparison between the h values estimated by 
computational modelling and the values obtained from experimental 
study. Figs. 8–10 shows the actual and predictive values of the heat 
transfer coefficient (h) values. The 4 different increase distributions in 
the figures indicate the h value, which varies according to the Reynolds 
number calculated at 4 different pH values (See Figs 11–13). 

Both the actual and predictive values of heat coefficient are shown in 
Figs 11–13, the graphs show that predictive values using LSTM and 
CNN-LSTM algorithm are very close to the actual values. This result can 
also be confirmed through the error analysis given in Tables 13 and 15. 
The CNN-LSTM algorithm predicts more accurately and its value of 
RMSE error analysis is less than the results achieved by ML methods. 

According to Tables 13 and 15, the CNN-LSTM method estimates with a 
73% higher accuracy rate compared to the LSTM method. 

Conclusions 

In this work, the ZnO nanoparticles were produced successfully as 
shown through the SEM images analyses. The nanofluid was obtained by 
adding pure water, ethanol and ethylene glycol into the produced 
nanoparticles and the heat transfer coefficients were calculated. As the 
Reynolds number increased, the heat transfer coefficient of nanofulids 
increased in accordance with the calculations. The results showed that 
the heat transfer coefficients can be estimated with the LSTM and CNN- 
LSTM deep learning model with an average error of 0.7342% and 
0.2001% respectively. In addition, the relative error of the heat transfer 
coefficients as a result of the magnetic effect was determined as 0.02944 
and 0.01701, respectively, with the same methods and model. As a 
result, with the increase of the pH value of the nanofluids produced by 
adding ZnO nanoparticles, the heat transfer coefficient decreased. With 
the application of the magnetic effect to the system, irregularity was 
observed in the flow and the friction on the pipe wall increased, 
resulting in increased heat transfer. The increase of nanoparticle ratio, it 
has been observed that there is no significant heat transfer increase as a 
result of magnetic effect. This study is important in terms of modeling 
the heat transfer coefficient values depending on the different pH values 
used during the synthesis of ZnO nanomaterial and observing the effects 
of the magnetic effect on the system. In addition, LSTM deep learning 
and CNN-LSTM deep learning models were used for the first time with 
this study and a deep learning model was developed for heat transfer 
exchange of nanofluids. Based on the results obtained, it has beenre-
vealed that the type of nanofluid and the material forming the system is 
important, especially in systems where the magnetic field effect is used 

Table 12 
Change of heat transfer values (Estimated with CNN + LSTM) according to the magnetic field effect.  

Re ZnO pH: 7.8 ZnO pH:8.5 ZnO pH:8.7 ZnO pH:9.9 
%0.1 

ZnO pH:9.9 
%0.2 

ZnO pH:9.9 
%0.3 

33% Ethylene Glycol + 67% Pure Water Pure Water 

Heat transfer coefficient(h,W/m2K) 

880 327.83 348.66 349.99 349.62 351.29 350.18 311.99 308.49 
1385 331.50 352.29 353.51 356.83 352.84 350.67 336.83 333.68 
1614 332.98 354.74 353.58 356.29 354.64 352.34 344.21 340.59 
1957 335.14 356.34 357.58 359.23 355.65 351.46 348.12 345.77 
2240 338.87 359.05 361.06 362.26 357.87 352.70 354.78 352.88  

Table 13 
Relative errors obtained with the LSTM deep learning model.  

Re ZnO 
pH:7.8 

ZnO 
pH:8.5 

ZnO 
pH:8.7 

ZnO 
pH:9.9 

33% Ethylene 
Glycol + 67% 
Pure Water 

Pure 
Water 

Heat transfer coefficient (h,W/m2K) 

880 1.8947 0.0225 0.6020 2.1128 0.1667 2.6409 
1385 1.1927 1.0564 0.8689 1.9249 1.0888 1.3673 
1614 0.9209 0.6726 1.1381 1.1290 0.5538 0.5664 
1957 0.5569 0.7414 0.6153 0.1011 1.7489 0.4897 
2240 0.2406 0.0939 0.7404 1.3163 0.7414 1.6829  

Table 14 
Relative errors obtained with the LSTM deep learning model according to the magnetic field effect.  

Re ZnO pH: 7.8 ZnO pH:8.5 ZnO 8.7 ZnO pH:9.9 
%0.1 

ZnO pH:9.9 
%0.2 

ZnO pH:9.9 
%0.3 

33% Ethylene Glycol + 67% Pure Water Pure Water 

Heat transfer coefficient (h,W/m2K) 

880 0.5370 0.5817 0.4857 0.0087 0.0063 0.3401 0.0557 0.0059 
1385 0.2117 0.0353 0.6046 0.0075 0.0008 0.5356 0.0121 0.1888 
1614 0.0041 0.1181 0.0146 0.1085 0.4984 0.4353 0.6203 0.6457 
1957 0.0051 0.0915 0.003 0.0323 0.0146 0.5788 0.6475 0.0089 
2240 0.3205 0.5432 0.0302 0.5122 0.3271 0.2196 0.0057 0.0190  

Table 15 
Relative errors obtained with the CNN-LSTM deep learning model.  

Re ZnO 
pH:7.8 

ZnO 
pH:8.5 

ZnO 
pH:8.7 

ZnO 
pH:9.9 

33% Ethylene 
Glycol + 67% 
Pure Water 

Pure 
Water 

Heat transfer coefficient (h,W/m2K) 

880 0.3144 0.0144 0.3023 1.0984 0.0482 0.1196 
1385 0.0259 0.0563 0.0426 0.0480 0.6336 0.1290 
1614 0.4499 0.0267 0.0720 0.0800 0.4422 0.0166 
1957 0.2097 0.0559 0.0972 0.0016 0.1975 0.3906 
2240 0.5432 0.0370 0.1945 0.0665 0.1576 0.2288  
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to increase heat transfer. It has been proven that the deep learning 
model created in our study has an accurate prediction feature as a result 
of its close approximation to the experimental results obtained in our 
research. The main purpose of using deep learning models in this study 
is;  

- To analyze the accuracy of the experimental data obtained from the 
experimental study.  

- To show that deep learning models can be used in the literature 
regarding such a study to be done.  

- To prove that by developing deep learning models, time loss can be 
avoided in this field. 

Fig. 8. Estimated h values obtained using LSTM.  

Fig. 9. Estimated h values obtained using CNN-LSTM.  

Fig. 10. Comparison of the experimental and estimated h values.  

Fig. 11. Estimated h values obtained using LSTM for Magnetic Impact with 
Deep Learning. 

Fig. 12. Estimated h values obtained using CNN + LSTM for Magnetic Impact 
with Deep Learning. 

Fig. 13. Comparison of the experimental and estimated h values for Magnetic 
Impact with Deep Learning. 

Table 16 
Relative errors obtained with the CNN + LSTM deep learning model according to the magnetic field effect.  

Re ZnO pH: 7.8 ZnO pH:8.5 ZnO pH:8.7 ZnO pH:9.9 
%0.1 

ZnO pH:9.9 
%0.2 

ZnO pH:9.9 
%0.3 

33% Ethylene Glycol + 67% Pure Water Pure Water 

Heat transfer coefficient (h,W/m2K) 

880 0.1100 0.0334 0.0485 0.6198 0.0571 0.1940 0.3049 0.0367 
1385 0.0778 0.0112 0.0038 0.4430 0.0634 0.0702 0.0023 0.0844 
1614 0.0289 0.2365 0.3644 0.0372 0.2490 0.3451 0.4415 0.0371 
1957 0.0063 0.0085 0.0052 0.0527 0.0499 0.0081 0.1904 0.0177 
2240 0.0319 0.2540 0.0016 0.0078 0.1767 0.2263 0.0837 0.0228  
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- For future studies, these data obtained from our research and verified 
by deep learning model should be taken into consideration. 

Researchers will be able to avoid error analysis and repetition of 
experiments in experimental studies they plan to do with a structure 
similar to the one in this paper. Thus, the time spent on testing will be 
reduced. In future research, it has been observed that the required heat 
transfer coefficient results can be obtained by using this model for the 
desired Reynolds numbers in laminar flow for the researchers who will 
work in the experiment set and similar systems used in our study. For 
this reason, it has been concluded that the obtained model can prevent 
time losses that may occur as a result of careful examination by re-
searchers who will work in this field. 
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