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Abstract 

The dysfunction of the cells in the brain that contain the substance known as dopamine, which enables brain cells 

to interact with each other, results in Parkinson's disease (PD). PD can cause many non-motor and motor 

symptoms such as speech and smell. One of the difficulties that Parkinson’s patients can experience is a change 
in speech or speaking difficulties. Therefore, the right diagnosis in the early period is important in reducing the 

possible effects of speech disorders caused by the disease. Speech signal of Parkinson patients shows major 

differences compared to normal people. In this study, a new approach based on pre-trained deep networks and 

Long short-term memory (LSTM) by using mel-spectrograms obtained from denoised speech signals with 

Variational Mode Decomposition (VMD) for detecting PD from speech sounds is proposed. The proposed model 

consists of four stages. In the first step, the noise is removed by applying VMD to the signals. In the second 

stage, Mel-spectrograms are extracted from the enhanced sound signals with VMD. In the third stage, pre-trained 

deep networks are preferred to extract deep features from the Mel-spectrograms. For this purpose, ResNet-18, 

ResNet-50 and ResNet-101 models are used as pre-trained deep network architecture. In the last step, the 

classification process is occured by giving these features as input to the LSTM model, which is designed to 

define sequential information from the extracted features. Experiments are performed with the PC-GITA dataset, 

which consists of two classes and is widely used in the literature. The results obtained from the proposed method 

are compared with the latest methods in the literature, it is seen that it has a better performance in terms of 

classification performance.  

Keywords: Parkinson's disease, Long short-term memory, Variational Mode Decomposition 
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1. Introduction 

A progressive neurodegenerative condition caused by the early death of dopaminergic neurons in Parkinson's 

disease [1]. Parkinson's disease is the second most common neurological disorder after Alzheimer's [2], it is 

estimated to affect about 1% of the population over 60 years old [3]. The causes of falls in parkinson's disease 

are not fully known. The course of the disease is unstable and progresses at different rates. Parkinson's disease 

symptoms can be treated with a variety of medications [4]. Parkinson's disease symptoms are classified as non-

motor symptoms and motor. Motion is associated with motor symptoms and they are more noticeable relative to 

non-motor symptoms. In motor symptoms, the parkinson's patient complains of slowness movement. Non-motor 

symptoms are apparent within a certain region; symptoms such as sleep disruptions, difficulty swallowing, 

chewing, and speaking apparent. The effect on the speech of Parkinson's disease is described as phonation, 

articulation and prosody [5]. Speech signals are also used as one of the main techniques for diagnosing 

Parkinson's disease [6]. In Parkinson's patients, physicians and speech pathologists have embraced subjective 

approaches dependent on auditory signs to identify various diseases [2]. In [6], in order to identify speech and 

pronunciation concerns, the authors did some experiments on speech signal recordings in three languages. It is 

noted that speech pronunciation is impaired by this disease, such as vowels, phrases, terms. Therefore, speech is 

an important method of diagnosis Parkinson's disease. In most traditional methods that support the automatic 

detection of Parkinson's-related vocal characteristics, subjects are asked to produce a fixed vowel in terms of 

both amplitude and frequency [7]. Various machine learning algorithms are implemented in common Parkinson's 

detection studies to learn the relationship between the extracted features and class labels. In most recent studies, 

disease detection has been carried out by using handwriting and speech datasets [8,9]. Support Vector Machines 
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(SVM) and acoustic properties were mostly considered for Diagnosis Parkinson's disease. In addition, it is 

observed that Gaussian models and Convolutional Neural Network (CNN) are used in PD classification in the 

literature. 

 The main contributions of this research are as follows:  

 Speech signals denoised by applying VMD. 

 A new system based on deep learning is proposed for the detection of PD by using speech signals. 

 Mel-spectrograms that have very effective results in sound processing are used instead of spectrograms 

in the time frequency domain. 

 The effectiveness of combined pre-trained deep networks and LSTM model in PD classification has 

been revealed. 

The rest of this paper is organized as follows: In Section 2, the literature studies are analyzed and the differences 

between them are shown. The information about the material is given in Section 3 and the methodology is 

summarized in Section 4. In Section 5, the dataset used in the study and experimental applications for defining 

Parkinson's patients is given. In Section 6, the findings of the study are explained. 

2. Related Works  

In this section of the study, some important studies about the classification of Parkinson’s disease will be given. 

Many approaches have been proposed with the development of pattern recognition and artificial intelligence. In 

[10], a new technique is also proposed for stratification of subjects with Parkinson's disease. Data were collected 

from 31 people, consisting of 195 continuous vowel phonations. 23 of these people are Parkinson's patients and 

8 are healthy people. Their methodology consists of three stages. These stages are pre-processing, feature 

extraction, and classification and feature selection. The linear kernel SVM is used for classification purposes. 

The accuracy value obtained from the proposed model is 91.4%. In [11], a data mining method known as weka 

was used to extract healthy subjects from Parkinson's patients. SVM which is preferred for classification 

purposes, is known as a supervised learning algorithm. Data pre-processing was performed on the dataset before 

the classification process. To achieve the best possible accuracy, different kernels were evaluated by using 

LibSVM. The linear kernel SVM produces the best accuracy of 65.21%, while the Radial Based Function (RBF) 

kernel achieves 60.86% accuracy. In [7], The authors proposed a new model. In the study, data were collected 

from 40 subjects (20 healthy, 20 Parkinson's). 26 speech samples were recorded from each subject, including 

short sentences, words, numbers, and continuous vowels. SVM and K-Nearest Neighbor (K-NN) were used for 

the classification process. The values 1, 3, 5 and 7 are preferred for the number of neighbors for K-NN, while 

linear and RBF kernel are constituted for SVM. The accuracy value of 82.50% with K-NN and the accuracy 

value of 85% when using SVM classifier was achieved. In [12], for Parkinson's disease diagnosis, different 

speech signal processing algorithms are compared. In the study, a new tool known as Tunable Q-factor wavelet 

transform (TQWT) was introduced. The classifiers were trained by using different classifiers in different feature 

subsets. It was observed that the Mel Frequency Kepsturm Coefficients (MFCC) and TQWT have reached the 

highest accuracy and therefore they are considered the important features in the classification problem of 

Parkinson's disease. In the study, the average accuracy of 86% was obtained with SVM. In [13], the authors 

proposed two frameworks based on CNN architectures for the classification of Parkinson's disease using vocal 

features. In both frameworks, various feature datasets were evaluated both separately and by combining both of 

them. In the first step, the feature datasets are set to 9-layer CNN as input, and in the second step, deep features 

are extracted simultaneously by passing the feature datasets through parallel layers that are directly connected to 

the convolution layers. According to experimental results, second framework appears to be very promising. In 

[14], a new artificial intelligence-based method has been developed to help early diagnosis of Parkinson's 

disease. Dysphonic measurements and clinical scores in 68 subjects were obtained by using the UCI Machine 

Learning database. Weights which are derived from the Multi-Layer Perceptron (MLP), were used for feature 

selection. This set of reduced features is then provided as a Lagrange Support Vector Machine (LSVM) input for 

classification process. This hybrid algorithm has been compared with other classifiers used in the study. Speech 

recordings were used for the detection of Parkinson's diseases in [15]. For sample and function collection, the 

two-dimensional technique of data selection is suggested. By using the chi-square statistical model, the proposed 

approach ranks the features and searches for the best subset of the specified features and selects samples 

recursively. The proposed method shows promissing results in terms of accuracy. In [16], a new method is 

proposed for the classification of vocal disorders with Hilbert-Huang Transform (HHT) and K-NN. The 12 

features of each recorded voices were calculated with HHT. Also, a sample has been characterized by 9 different 

features based on the Linear Prediction Coefficients (LPCC) algorithm. Then, after each sample was expressed 

by 21 features, the classifier is established based on KNN. Additionally, the same experiments were performed 



by using the Random Forest classifier and Decision Tree to evaluate the performance of the K-NN classifier. The 

experimental results reveal that the classifier based on K-NN seems to be better than the other two classifiers 

with an accuracy rate of 93.3%. In [17], MR images of healthy and Parkinson's patients were classified by using 

deep neural networks. CNN architecture AlexNet has been used to improve diagnosis of Parkinson's disease. It 

was retrained with a pre-trained deep network with MR images and the classification process was performed. 

The accuracy value of 88.9% was achieved with the proposed system. 

3. Background  

 
3.1. Convolutional Neural Network 

Technically, the CNN model includes the pooling, convolution, fully connected layers and classification layer 

[18]. The convolution is the first layer from which an input image derives features. The convolution is a filter 

which applied to the input image to extract a feature map from the input image. The height and weights of the 

filters are smaller than the input volume. The formula for the convolution process is assumed in Equation 1. The 

input image and kernel are denoted by f and h, respectively. The row and column indexes of the result matrix are 

represented by m and n, respectively. 

     𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] = ∑ ∑ ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘]𝑘𝑗                                         (1) 

The pooling layer is another architecture of pre-trained deep networks. The pooling layer is used to reduce the 

the dimensions of the input image after convolutional layer and to accelerate the calculations. Fully connected 

layers are an important constituent of deep networks that have proven to be very successful in identifing and 

classifying images.  The completely linked input layer takes and flattens the output of the previous layers after 

turning them into a single vector that can be an input for the next level. The last layer is the output layer and 

probabilities are estimated for each label. Softmax is generally selected in this layer. Softmax formula is 

computed in Equation 2. 

      𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑗 = 𝑒𝑥𝑖∑ 𝑒𝑥𝑛𝑁𝑛=1   , 𝑗 = 1… .𝑁                                                   (2) 

3.2.  Long Short-Term Memory 

 

Long Short-Term Memory networks are often referred to as "LSTM" and they are a special type of Recurrent 

Neural Networks (RNN). In its hidden layer, the LSTM neural network has a complex structure called LSTM 

cell. There are three gates in the LSTM cell shown in Figure 1, namely the input gate, the forgotten gate and the 

output gate that govern the information flow through the cell and neural network. 

 

Figure 1. The architecture of LSTM  

The LSTM architecture is designed in a chain like structure [19]. The first step of composing an LSTM network 

is to determine the information to be extracted from the cell as given in Equation 3. The sigmoid function 

decided to the data definition and exclusion process. Furthermore, the sigmoid feature decides which part of the 

output is to be extracted. The forget gate (or ft) is a gate in which ht-1 is a vector ranging from 0 to 1 and Ct-1 

corresponds to each number in the cell state.  

                   𝑓𝑡= σ(𝑊𝐹[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)                        (3) 



 

Here, σ is denoted as the sigmoid function and (Wf) and (bf) are refered the weight matrices and the bias vector 

of forget gate. The equations for the forward pass of an LSTM unit in Equations 4-6. In equation 4, it decides, 

stores the information (Xt) from the new input and also updates the cell state. This stage consists of two parts 

which are the sigmoid layer and the tanh layer. The sigmoid layer must first determine whether or not to update 

the new data (0 or 1). It was put the cell state via tanht in Equation 5 to force the values to be between -1 and 1. 

And it was multiplied to update the cell state by the output of the sigmoid gate. The new memory was added to 

the old one, Ct−1, into the new cell state Ct. 
 

           𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑋𝑡 + 𝑏𝑖]),                                                          (4) 

    𝑁𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑛[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑛),                                                 (5) 

               𝐶𝑡 = 𝐶𝑡−1𝑓𝑡 + 𝑁𝑡𝑖𝑡                                                     (6) 

 

Here, in the time between t-1 and t, Ct−1 and Ct are denoted as cell states. In Equation 7, the sigmoid layer 

defines the portions of the cell state go to the output. (Ot) In the next step, the output of the sigmoid gate (Ot) is 
multiplied by the new values (Ct) produced by the tanh layer in Equation 8.  

 

                         𝑂𝑡 = 𝜎(𝑊0[ℎ𝑡−1, 𝑋𝑡] + 𝑏0]),                                                  (7) 

                ℎ𝑡 = 𝑂𝑡𝑡𝑎𝑛ℎ (𝐶𝑡)                                                                               (8) 

 

Here w0 and b0 are weight matrices and bias vector of the output gate, respectively.  

4. Proposed Method 

In this section of the study, the proposed methodology for Parkinson's disease and its main components are 

discussed in detail. The proposed method consists of four stage. In the first stage, the raw speech signals are 

preprocessed to obtaine the input of the proposed model and then VMD is applied. Mel-spectrograms are 

secondly extracted from the enhanced signals with VMD. Thirdly, the fc-1000 layer of ResNet models is used to 

extract outstanding and distinctive features from mel-spectrograms. Finally, CNN features are input to the deep 

bi-directional LSTM to attribute the temporal clues and recognize the sequential information in a set. Detailed 

explanation of each stage of the architecture is discussed in the next sections. The pseudo code of the proposed 

model is given in Algorithm 1. The schematic representation of the proposed architecture is shown in Figure 2. 

 

Algorithm 1. Algorithm of the proposed method 

Input: Parkinson and Normal speech signals, wav data 44.1 KHz 

Output:  y = [P (𝑦parkinson, P (𝑦Normal ),] where P(α)>> Probability of each class 

1: Generate Variational mode decomposition paremeters k=5,  α=120 ve tol=10^(-7) 

2: Apply preprocessing to speech data 

3 
𝑚𝑖𝑛{𝑠𝑘}{𝑤𝑘} {∑ ‖ 𝜕𝑡𝐾𝑘=1 [(𝜕(𝑡) + 𝑗𝜋𝑡) ∗ 𝑠𝑘(𝑡)] 𝑒−𝑗𝑤𝑘||22 }, Apply 5 mod VMD to all raw speech signals 

4: 
𝐿({𝑢𝑘},   {𝑤𝑘}, 𝜆) = 𝛼 ∑ ‖𝜕𝑡𝑘  [(𝜕(𝑡)+ 𝑗𝜋𝑡) ∗𝑀𝑘(𝑡)] 𝑒−𝑗𝑤𝑘   ||22 + ‖𝑓(𝑡) − ∑ 𝑢𝑘𝑘 (𝑡)‖ + 〈𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 〉,  Get denoised 

Speech Signal Using VMD                                           

5: Mel-spectrogram extraction from denoised speech signals 

7: Separate data for testing and training with the 10-fold verification method 

8: Use the fc-1000 layer of ResNet-18, ResNet-50, and ResNet-101 models to extract features from mel-spectrrograms. 

9: Get deep features vector from fc-1000 layers 

10: Give the deep features to the LSTM model 

 
 



 

Figure 2. Proposed Model 

4.1. Preprocessing 

 

The speech signals reach a steady state in a certain period of time as are not static. Therefore, the speech signal is 

firstly framed and feature extraction process is performed in a short frame in time. The length of each frame is 

chosen as 25ms. The widely used Hamming window is used after frame process. 50% overbinning is set between 

the consecutive frames to achieve a smoothing transition between frames. 

 

4.2.  Denoising with Variational Mode Decomposition 

The real signal is decomposed into finite number of sub-signals and modes by using the VMD method [20]. It is 

a adaptive signal decomposition technique, where each sub-signal compact around their respective center 

frequencies. The bandwidth of each modal is evaluated in three stage. In the first stage, Hilbert transform is used 

to obtain the frequency spectrum of each modal. In the second stage, it is shifted to the frequency spectrum of 

mode to the corresponding baseband. In the third stage, the bandwidth of the modal is estimated by the Gaussian 

smoothness of the demodulated signal [20]. The result can be formulated as a constrained variational problem.  

 

                                        
𝑚𝑖𝑛{𝑠𝑘}{𝑤𝑘} {∑ ‖ 𝜕𝑡𝐾𝑘=1 [(𝜕(𝑡) + 𝑗𝜋𝑡) ∗ 𝑠𝑘(𝑡)] 𝑒−𝑗𝑤𝑘||22 }                                          (9) 

 
                                                         so that   ∑ 𝑢𝑘𝑘 = 𝑓                                                               (10) 

 
where, 𝑢𝑘 denotes as kth decomposed mode, 𝑤𝑘 indicates the center frequency of the kth mode signal. f (t) is the 

input signal and [(𝜕(𝑡) + 𝑗𝜋𝑡) ∗ 𝑀𝑘(𝑡)] is the Hilbert transform of 𝑢𝑘(𝑡). The exponential term 𝑒−𝑗𝑤𝑘  shifts the 

frequency spectrum of each mode to the center frequency. The constrained optimization problem in Equation 9 

can be solved using augmented Lagrangian multipliers as follows; 

 𝐿({𝑢𝑘},   {𝑤𝑘}, 𝜆) = 𝛼 ∑‖𝜕𝑡𝑘  [(𝜕(𝑡) + 𝑗𝜋𝑡) ∗ 𝑀𝑘(𝑡)] 𝑒−𝑗𝑤𝑘   ||22 

                                                 +‖𝑓(𝑡) − ∑ 𝑢𝑘𝑘 (𝑡)‖ + 〈𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 〉                                                 (11) 
 
It is indispensable to define the initial parameters for the decomposition. These parameters are the decomposition 

number 𝑤𝑘, the balancing parameter of the data compliance constriction is α and the convergence criteria 
tolerance is tol. It is picked as 𝑤𝑘 = 5, 𝛼 = 120 and 𝑡𝑜𝑙 = 10−7. The above parameters are the constant used in 

many studies for efficient decomposition of the speech signal [21,22]. The pseudo code of VMD is given in 



algorithm 2. 5 modes decomposed speech signal is given in Figure 3. In addition, the original speech signal and 

the denoised signal by applying VMD are given in Figure 4. 

 
Algorithm 2. Algorithm of VMD 

Input: raw_signal=Raw Parkinson and Normal Speech Signals, wav data 

Output:  denoised_signal= wav data 

1: [x, residual] = vmd(raw_signal,'NumIMF',6); 

3 for n = 1:5 

4:     ax(n) = nexttile(t); 

5:     plot(tm,imf(:,n)') 

6:     xlim([tm(1) tm(end)]) 

7: end 

8: denoised_signal = sum(imf(:,2:4),2); 

9: plot(denoised_signal, raw_signal) 

 

 
Figure 3. 5 mode VMD of Speech Signal 

 

 
Figure 4. Original and denoised signal 

 

4.3. Mel-Spectrogram Extraction 

MFCC is widely used for voice recognition. Mel is the scale of the frequency of a sound tone picked by the 

human ear. As a result of the studies, it has been observed that the scales are linear up to 1 kHz, and a 

logarithmic increment in higher values. The relationship between Mel spectrum (M) and frequency (Hz) is 

shown in Equations 12-13. 

             𝑓𝑚𝑒𝑙 = 2595𝑙𝑜𝑔10(1 + 𝑓700 )                                 (12) 

                       𝑓 = 700(10 𝑚2595 − 1)                          (13) 



Discrete Fourier transform (DFT) has been applied to transform the speech signal from time-domain to 

frequency domain. The formula for the transformation of the speech sound signal x(n) to the frequency domain 

by using DFT is given in Equation 14. 

          𝑋𝑘 = ∑ 𝑥𝑛𝑁−1𝑘=0 𝑒−2𝜋𝑗𝑘𝑛 / 𝑁 ,       n = 0, 1, 2, … . . . , N − 1                       (14) 

 
The next stage is the calculation of the power of spectrum. The power of spectrum P(k) is obtained as in 

Equation 15. 

 

        𝑃(𝑘) = 1𝑁 |𝑋(𝑘)|2                                                                      (15) 

 
The power of spectrum P(k) is passed through a series of Mel scale triangular filter windows to obtain the Mel 

spectrum. The frequency of the triangle filter, 𝐻𝑚(𝑘) is calculated as follows: 

 

𝐻𝑚(𝑘) = {  
    0,                                                                𝑘 < 𝑓(𝑚 − 1)𝑘−𝑓(𝑚−1)𝑓(𝑚)−𝑓(𝑚−1) ,                             𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)𝑓(𝑚+1)−𝑘𝑓(𝑚+1)−𝑓(𝑚) ,                            𝑓(𝑚) ≤ 𝑘 ≤ 𝑓(𝑚 + 1)0,                                                                  𝑘 > 𝑓(𝑚 + 1)    (16) 

 

f(m) is the center frequency of the Mel triangle filter. The logarithm energy spectrum in each frame is S(m) 

which is obtained using a logarithmic process. 

 
                         𝑆(𝑚) = 𝑙𝑛[∑ 𝑃(𝑘)𝐻𝑚𝑁−1𝑘=0 (𝑘)], 0 ≤ 𝑚 ≤ 𝑀                                       (17)    

 P𝑚 is the power spectrum, 𝐻𝑚(k) is filter window and M is the number of the filter windows. The samples of the 

speech sound signal and the mel spectrogram are given in Figure 5. 

 

 

(a) (b) 
Figure 5. Ilustration of Speech Sound Signal and Mel spectrogram (a) Speech Sound Signal, (b) Mel 

spectrogram 

4.4. Combined ResNet-LSTM network  

In this research, a method based on CNN and LSTM model has been developed for the detection of Parkinson’s 
disease using mel spectrogram images of speech signals. In the structure of this architecture, ResNet and LSTM 

combined models are used together. ResNet models are used to extract feature from the mel spectrogram images 

of VMD denoised speech signals in this study. ResNet models are preferred to observe the effect of network 

depth on performance. There are many variants of ResNet and the widely used ResNets18, ResNet50 and 

ResNet101 models were prefered in this study. ResNet ranked first in the ILSVRC competition held in 2015 

with the lowest error rate with 3.37% [23]. ResNet18 has 73 sub-layers, ResNet50 177 sub-layers, and 

ResNet101 347 sub-layers. Also, all of these networks have fc-1000 (1000 neurons) and this layer is used as 

feature extraction layer. Detailed features of the layers in ResNet-18, ResNet-50 and ResNet-101 models are 

given in Table 1. The features obtained from the fc-1000 layers of ResNet-18, ResNet-50 and ResNet-101 

models were used as input to the designed LSTM. Softmax in the output layer of the designed two-layer LSTM 

model with 32 and 64 outputs were used for Parkinson diagnosis. The designed hybrid ResNet-LSTM network is 

shown in Figure 6. 



Table 1. The general architecture of ResNet Models  

Layer name Output Size ResNet-18 ResNet-50 ResNet-101 

Conv1 112×112 7 × 7,64, stride 2 7 × 7, 64, stride 2 7 × 7, 64, stride 2 

Conv2_x 56×56 3 × 3 max pool, stride 2 3 × 3 max pool, stride 2 3 × 3 max pool, stride 2 [3x3, 643x3, 64] × 2 [ 1x1, 643x3, 641x1, 256] × 3 [ 1x1, 643x3, 641x1, 256] × 3 

Conv3_x 28×28 [3x3, 1283x3, 128] × 2 [1x1, 1283x3, 1281x1, 512] × 4 [1x1, 1283x3, 1281x1, 512] × 4 

Conv4_x 14×14 [3x3, 2563x3, 256] × 2 [ 1x1, 2563x3, 2561x1, 1024] × 6 [ 1x1, 2563x3, 2561x1, 1024] × 23 

Conv5_x 7×7 [3x3, 5123x3, 512] × 2 [ 1x1, 5123x3, 5121x1, 2048] × 3 [ 1x1, 5123x3, 5121x1, 2048] × 3 

Output 1×1 average pool, fc1000, 

softmax 

average pool, fc1000, 

softmax 

average pool, fc1000, 

softmax 

 

 
 

Figure 6. Combined ResNet-LSTM Model 

 

5. Experimental Applications 
5.1.  Dataset 

PC-GITA Spanish dataset is used in this research [24]. The dataset contains speech records of 50 Parkinson's 

disease patients and 50 healthy people speaking Spanish. In addition, the records were taken from 25 men and 25 

women. The dataset details are shown in Table 2. The dataset consists of recording monologues, vowels and 

reading the text. Each record consists of various sound characteristics discussed below. The sound signals of 

healthy and Parkinson's patients are given in Figure 7. 

Table 2. The Age and gender dispersion of Parkinson's disease and healthy people in the dataset.  

Data  Parkinson Normal Gender Age  (Male/Female) 

Vowels A 150 150  Parkinson 

 E 150 150 75 M 

 

62.2±11.2 M 

60.1±7.8 F 

 I 150 150 75 F  

 O 150 150   

 U 150 150  Normal 

Words Apto 50 50 25 M 

25 F 

61.2±11.3 M 

60.7±7.7 F 

 Atelta 50 50 25 M 

25 F 

 

Monologues 

Words 

 50 

50 

50 

50 

25 M 

25 F 

 



 

 

(a) (b) 
Figure 7. Ilustration of normal and parkinson speech signals (a) Normal speech (b) Parkinson speech 

5.2.  Evaluation Metrics 

The results obtained from the proposed method were calculated using the evaluation criteria explained below. 

Accuracy is measured by the number of predictions that are accurate, divided by the total number of predictions. 

The accuracy evaluation is given in Equation 18. 

 

                                  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = |𝑇𝑃|+|𝑇𝑁||𝑌𝑁|+|𝑌𝑃|+|𝑇𝑁|+|𝐷𝑃|                                           (18) 

Precision (P) is a evaluation that predicts the probability that a positive forecast is correct. The precision 

evaluation is given in Equation 19. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) = |𝑇𝑃||𝑇𝑃|+|𝐹𝑃|                                      (19) 

The F-score is a harmonious mean of positive prediction ratio and sensitivity criteria and is calculated as shown 

in Equation 20. 

   𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2∗|𝑇𝑃|2∗|𝑇𝑃|+|𝐹𝑃|+|𝐹𝑁|                                 (20) 

5.3.  Experimental Results 

 
In this section, the results obtained from the proposed approach and the performance comparison explains in 

detail. After extracting the mel-spectrogram images using the VMD sound recordings, these images were given 

as input to the Resnet models. The high-level detected features of ResNet models are extracted by using the fc 

1000 layer. In order to define hidden gates from deep learning networks and to detect Parkinson's disease, the 

features were given as input to LSTM. Finally, the classification was occured using Softmax. Data were 

decomposed for training and testing using a 10-fold cross validation technique. The different parameters were 

used for the training process in order to ensure that the model becomes sufficient and optimal. The experiments 

were realized with different batch sizes and different learning rates for the most ideal solution. The batch sizes 

are set to 32, 64, and 128, respectively. The learning rate was set as 0.01, 0.001 and 0.0001, respectively. The 

number of epochs is defined as 20. The results obtained with various parameters are given in Table 3-5. The 

classification results obtained from ResNet18 + LSTM is illustrated in Table 3. With a batch size of 32 and 

learning rate of 0.1, the highest accuracy rate is obtained as 95.31%, as the batch size choosen to 64 and learning 

rate to 0.001, the highest accuracy is measured 94.91%, the batch size is set to 128 and learning rate to 0.001, the 

highest accuracy rate is obtained 95.47% without appling VMD. After VMD is applied, the highest accuracy rate 

is measured 98.30% with the batch sizes of 32 and the learning rate of 0.01, the batch size is set to 64 and 

learning rate to 0.01, the highest accuracy rate is acquired 98.54%, the highest accuracy rate is obtained as 

98.37% it was set the batch sizes 128 and learning rate 0.01. The features scatter obtained from the ResNet18 + 

LSTM model is given in Figure 8 (a), and the confusion matrix belonging to the best classification result 

obtained from this model is given in Figure 8 (b). 

 

 

 



Table 3. The classification results obtained from ResNet-18 + LSTM. 

Model Batch-Size Learning rate Accuracy % Precision % Sensitivity% 

ResNet-18&LSTM 

(without VMD) 

32 

0.1 95.31 94.89 95.62 

0.01 94.08 94.19 95.82 

0.001 94.88 94.80 94.96 

64 

0.1 94.18 95.28 95.52 

0.01 94.06 94.35 94.65 

0.001 94.91 95.12 94.39 

128 

0.1 95.02 95.36 95.28 

0.01 95.06 95.53 94.28 

0.001 95.47 94.51 95.24 

ResNet-18&LSTM 

(with VMD) 

 0.1 96.12 98.14 96.74 

32 0.01 98.30 96.97 96.86 

 0.001 97.97 97.81 97.81 

 0.1 98.45 97.30 95.53 

64 0.01 98.54 96.84 95.91 

 0.001 98.24 96.42 97.32 

 0.1 95.85 95.68 98.42 

128 0.01 98.37 96.88 96.71 

 0.001 96.06 98.40 95.65 

 

 
 

(a) (b) 

Figure 8. Ilustration of feature scatter and confusion matrix for Resnet18+LSTM (a) Feature scatter plot, 

(b) Confusion matrix 

The classification results from ResNet-50+LSTM is given in Table 4. The batch sizes, and the learning rate is set 

to 32 and 0.001, respectively, the highest accuracy rate is measured as 95.68. The batch size is set to 64 and 

learning rate to 0.01, the highest the accuracy rate is obtained as 95.81, the highest accuracy rate was acquired as 

95.17 with the learning of 0.01 and batch sizes of 128, without appling VMD. After applying VMD, the highest 

accuracy rate was 98.04% when the Batch sizes were set to 32 and learning rate to 0.01, the highest accuracy rate 

was 97.84% when the batch sizes were set to 64 and learning rate 0.001, and the highest accuracy rate was 

measured as 97.68% with batch sizes of 128 and learning rate of 0.01. The features obtained from the ResNet-

50+LSTM model is given in Figure 9 (a), and the confusion matrix of the best classification result obtained from 

this model is given in Figure 9 (b).  

 



Table 3. The classification results obtained from ResNet50 + LSTM. 

Model Batch-Size Learning rate Accuracy % Precision % Sensitivity% 

ResNet-50&LSTM 

(without VMD) 

32 

0.1 94.44 94.64 95.26 

0.01 94.26 95.96 95.77 

0.001 95.68 95.98 94.30 

64 

0.1 95.78 95.00 94.34 

0.01 95.81 95.72 95.88 

0.001 94.13 95.70 94.28 

128 

0.1 94.15 94.42 95.39 

0.01 95.17 94.76 94.77 

0.001 94.34 95.45 94.99 

ResNet-50&LSTM 

(with VMD) 

 0.1 95.96 96.70 96.21 

32 0.01 98.04 96.05 96.56 

 0.001 95.34 97.94 98.32 

 0.1 96.10 95.79 97.18 

64 0.01 95.64 95.92 97.92 

 0.001 97.84 97.27 97.03 

 0.1 97.59 97.80 96.19 

128 0.01 97.69 97.33 97.28 

 0.001 97.25 96.51 95.75 

 

  

(a) (b) 

Figure 9. Ilustration of feature scatter and confusion matrix for Resnet-50+LSTM (a) Feature scatter plot, 

(b) Confusion matrix 

The classification results obtained from ResNet101 + LSTM is given in Table 5. Without applying VMD, when 

the batch size of 32 and learning rate of 0.01 the highest accuracy rate is 95.94%, when the batch size of 64 and 

the learning rate of 0.001 the highest accuracy rate is measured as 94.75%, when the batch sizes 128 and 

learning rate of 0.01 the highest accuracy rate is obtained as 95.62%. After VMD is applied, when the batch size 

is set to 32 and learning rate to 0.001, the highest accuracy rate is measured as 97.21%, when the batch size of 64 

and the learning rate of 0.001 the highest accuracy rate is acquired as 97.48%, when the batch sizes of 128 and 

the learning rate of 0.001 the highest accuracy rate is obtained as 98.61%. The distribution of the features 

obtained from the ResNet-101 + LSTM model is given in Figure 10 (a), and Figure 10 (b) gives the uncertainty 

matrix with the best classification outcome obtained from this model. 

 

 

 



Table 5.  The classification results obtained from ResNet101 + LSTM. 
Model Batch-Size Learning rate Accuracy % Precision % Sensitivity% 

ResNet-101&LSTM 

(without VMD) 

32 

0.1 95.48 94.61 95.90 

0.01 95.94 95.28 94.30 

0.001 95.12 94.52 95.92 

64 

0.1 94.39 94.88 94.74 

0.01 94.60 95.66 94.52 

0.001 94.75 95.54 94.95 

128 

0.1 94.29 94.53 94.94 

0.01 95.62 95.93 94.98 

0.001 94.13 95.42 95.60 

ResNet-101&LSTM 

(with VMD) 

 0.1 97.20 97.80 95.78 

32 0.01 96.41 96.77 97.88 

 0.001 97.21 97.67 97.65 

 0.1 96.33 96.97 95.81 

64 0.01 96.19 98.34 96.03 

 0.001 97.48 95.51 97.42 

 0.1 98.52 96.45 96.85 

128 0.01 97.08 96.54 96.52 

 0.001 98.61 96.11 95.93 

 

 

 

 

 

(a) (b) 

Figure 10. Ilustration of feature scatter and confusion matrix for Resnet-101+LSTM (a) Feature scatter 

plot, (b) Confusion matrix 

In this study, the results are compared with the other methods used in the literature in order to determine the best 

performance of the proposed process. Some important studies that focused on the detection Parkinson’s from 

speech signals have been summarized in Table 6. 

 

 

 

 



Table 6. Performance comparison with other approaches  

Author Technique Data Sample Accuracy% 

Vásquez et al. [25] Bayesian ridge regression (BRR) 
Pc-Gita (Wovel, words, 

sentences) 
94.90 

Arias et al. [26] CNN, SVM Pc-Gita (monologues) 84 

Rueda et al. [27] Random Forest, SVM Pc-Gita (Wovel, words) 70 

Zahid et al. [28] Deep Features with Random Forest 

Pc-Gita (Wovel, words, 

sentences, read text, 

monologues) 

98.30  

Our Approach ResNet-101&LSTM 

(With VMD) 

Pc-Gita (Wovel, words, 

sentences, read text, 

monologues) 

98.61 

 
Vásquez et al. [25] developed a methodology based on voice processing and machine learning methods to 

measure the dysarthria level of Parkinson's patients. The features extracted from various dimensions of speech 

such as phonation, articulation, and prosody was modeled. Dysarthria level was measured using linear and 

nonlinear regression models with the accuracy 94.90%. Arias et al. [26] evaluated the phonation, articulation, 

and prosody data. SVM and CNN are used for classification and extraction of optimal features. The findings of 

the study indicated that prosody features were more effective than others and an accuracy of 84% was obtained. 

Rueda et al. [27] focused on electing features that best represent the pathophysiology of dysarthria caused by 

Parkinson's disease. The number of features was reduced to 15 by applying two-stage feature selection to the 

features extracted from sound recordings. The accuracy of 70% for classification has been achieved by using 

SVM and Random Forest. Zahid et al. [28] proposed three methods for the detection of Parkinson's disease. In 

the first method, an approach based on transfer learning using spectrograms of speech recordings was preferred. 

Using machine learning classifiers, deep features obtained from speech spectrograms were evaluated in the 

second technique. Simple acoustic properties of the recordings have also been evaluated using machine learning 

classifiers in the third technique. It was achieved 98.30% accuracy with deep features and Random Forest 

classifier. 

 

 

6. Conclusion 

People all over the world suffer from Parkinson's disease, which is one of the most common diseases. Early 

disease diagnosis is an open research topic, and considerable work has been done by several researchers to 

achieve the highest precision in detection and diagnosis. Computational models are effective in diagnosing 

medical disease and data are the primary factor. In this experimental study, a method based on deep networks is 

proposed for the detection of Parkinson's disease from sound recordings. In order to extract features from the 

mel-spectrogram images of the VMD applied voice signals, the fc-100 layer of the ResNet models is preferred. 

The designed LSTM network is used to recognize sequential information from the features obtained from 

ResNet models. Softmax is placed in the last layer of the designed architecture for classification. In the proposed 

method, it is tested on the PC-GITA Spanish dataset consisting of two classes. Data are decomposed for testing 

and training by using the 10-fold cross validation technique. The highest classification performance is obtained 

from the ResNet-101 + LSTM model with VMD as 98.61%. The comparison of the proposed model with the 

state of the art of models demonstrates our model's efficacy in PD detection. 
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Figures

Figure 1

The architecture of LSTM



Figure 2

Proposed Model



Figure 3

5 mode VMD of Speech Signal

Figure 4

Original and denoised signal

Figure 5

Ilustration of Speech Sound Signal and Mel spectrogram (a) Speech Sound Signal, (b) Mel spectrogram



Figure 6

Combined ResNet-LSTM Model

Figure 7

Ilustration of normal and parkinson speech signals (a) Normal speech (b) Parkinson speech



Figure 8

Ilustration of feature scatter and confusion matrix for Resnet18+LSTM (a) Feature scatter plot, (b)
Confusion matrix

Figure 9

Ilustration of feature scatter and confusion matrix for Resnet-50+LSTM (a) Feature scatter plot, (b)
Confusion matrix



Figure 10

Ilustration of feature scatter and confusion matrix for Resnet-101+LSTM (a) Feature scatter plot, (b)
Confusion matrix


