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Abstract
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1 Introduction
The multi-variable Hermite polynomials have been used in the analysis of charged-beam
transport problems in classical mechanics as well as in the formulation of quantum-phase-
space mechanics. Umbral methods have been largely exploited to study the properties of
the Hermite polynomials. Recently Dattoli et al. applied the method of umbral to obtain
certain results for the Hermite polynomials [8]. The study of umbral formalism provides
a fairly helpful tool in many topics of practical nature concerning physics of free electron
laser. In this paper, we extend the umbral treatment of the Hermite polynomials from two
variables to three variables.

We begin with some umbral results on the 2-variable Hermite polynomials (2VHP)
Hn(x, y). We recall that 2VHP Hn(x, y) are defined by means of the following generating
function and series definition [2]:

∞∑

n=0

Hn(x, y)
tn

n!
= ext+yt2

(1)

and

Hn(x, y) = n!
[ n

2 ]∑

k=0

xn–2kyk

k!(n – 2k)!
, (2)

respectively.
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The boundary conditions for 2VHP Hn(x, y) are as follows [8, 21]:

Hn(x, 0) = xn (3)

and

Hn(0, y) = n!
y n

2

�( n
2 + 1)

∣∣∣∣cos

(
n

π

2

)∣∣∣∣, (4)

respectively.
In this paper, we employ the umbral method to the 3-variable Hermite polynomials.

Also, we exploit the umbral method to obtain several extensions of the 3-variable Hermite
polynomials. Recently, Dattoli et al. gave an umbral method for 2VHP Hn(x, y), which plays
an important role in the field of special functions and applied mathematics to obtain all
the relevant properties of the other special polynomials as well as special functions [8].

In [8], Dattoli considered the idea of umbra, denoted by b̂y, for 2VHP Hn(x, y) as follows:

b̂r
yφ0 =

y r
2 r!

�( r
2 + 1)

∣∣∣∣cos r
π

2

∣∣∣∣ (φ0 �= 0), (5)

where φ0 is known as polynomial vacuum and b̂y acting on the state φ0 yields 2VHP
Hn(x, y).

The exponential of umbra b̂y is particulary important to derive the generating functions
for 2VHP Hn(x, y). The exponential of umbra b̂y is as follows [8]:

eb̂ytφ0 = eyt2
. (6)

In view of equation (5), 2VHP Hn(x, y) can be reduced binomially as follows:

Hn(x, y) = (x + b̂y)nφ0, (7)

see [8].
Dattoli [8] introduced the 2-parameter 2-variable Hermite polynomials 2P2VHP Hn(x,

y|β ,α):

Hn(x, y|β ,α) = b̂β
y
(
x + b̂α

y
)n

φ0. (8)

The generating function of 2P2VHP Hn(x, y|β ,α) is as follows:

∞∑

n=0

Hn(x, y|β ,α)
tn

n!
= exty

β
2 e(α,β)

(
y

α
2 t

)
, (9)

where

e(α,β)(x) =
∞∑

r=0

�(αr + β + 1)xr

�( αr+β

2 + 1)r!

∣∣∣∣cos

(
αr + β

2
π

)∣∣∣∣, (10)
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see [8], which is a generalisation of the exponential function. It is worthy to note that

e(1,0)(x) = ex2
. (11)

Now, we recall that the 3-variable Hermite polynomials (3VHP) Hn(x, y, z) are defined by
means of the following generating function and series definition [6]:

∞∑

n=0

tn

n!
Hn(x, y, z) = exp

(
xt + yt2 + zt3) (12)

and

Hn(x, y, z) = n!
[ n

3 ]∑

k=0

Hn–3k(x, y)zk

k!(n – 3k)!
, (13)

respectively.
The operational definition of 3VHP Hn(x, y, z) is as follows [6]:

Hn(x, y, z) = ezD3
x+yD2

x xn, (14)

where

Dx :=
d

dx
.

The Gould–Hopper polynomials (GHP) H (m)
n (x, y) are defined by means of the following

generating function and series definition [13]:

∞∑

n=0

H (m)
n (x, y)

tn

n!
= ext+ytm (15)

and

H (m)
n (x, y) = n!

[ n
m ]∑

r=0

xn–mryr

r!(n – mr)!
, (16)

respectively.
Since

mb̂r
yφ0 =

y r
m r!

�( r
m + 1)

Am,r , (17)

Am,r =

⎧
⎨

⎩
1 r = mp, p ∈N,

0, otherwise.
(18)

Dattoli [8] defined GHP H (m)
n (x, y) in terms of the nth power of the binomial given by

H (m)
n (x, y) = (x + mb̂y)nφ0. (19)
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The 3-variable generalised Hermite polynomials (3VgHP) H (s,m)
n (x, y, z) are defined by

means of the following generating function [11]:

∞∑

n=0

H (s,m)
n (x, y, z)

tn

n!
= e(xt+ytm+zts) (20)

and equivalently by

H (s,m)
n (x, y, z) = n!

[ n
s ]∑

r=0

H (m)
n–sr(x, y)zr

(n – sr)!r!
. (21)

The operational definition of 3VgHP H (s,m)
n (x, y, z) are as follows [11]:

H (s,m)
n (x, y, z) = exp

(
zDs

x + yDm
x
)
xn (22)

and

H (s,m)
n (x, y, z) = exp

(
zDs

x
)
H (m)

n (x, y). (23)

In this paper, motivated by the work of Dattoli on the umbral behaviour of the Hermite
polynomials [8, 10], we extend the umbral formalism to the 3-variable Hermite polyno-
mials. In Sect. 2, we define an umbra for the 3-variable Hermite polynomials and obtain
umbral definition for 3-variable Hermite polynomials and 3-variable generalised Hermite
polynomials. In Sect. 3, we introduce an extension of 3-variable Hermite polynomials to
4-parameter 3-variable Hermite polynomials by using the umbral formalism and estab-
lish certain results involving these polynomials. In Sect. 4, we discuss some special cases
of 4-parameter 3-variable Hermite polynomials. Some concluding remarks are given in
Sect. 5.

2 Umbra and 3-variable Hermite polynomial
In [3, 7, 8, 16], it is established that the umbral method serves as an important tool to deal
with certain properties of special functions. In this paper, by making use of their method,
we introduce the umbral definition of the 3-variable Hermite polynomials Hn(x, y, z). In
this section, we also obtain the umbra for 3VHP Hn(x, y, z) and study some of its new
properties.

Taking x = 0 and y = 0 in equation (13), we obtain the boundary condition for the 3-
variable Hermite polynomials Hn(x, y, z):

Hn(0, 0, z) =
z n

3 n!
�( n

3 + 1)

(∣∣∣∣2 cos
nπ

3

∣∣∣∣ – | cos nπ |
)

. (24)

In view of equation (24), we introduce the following umbra:

ĉr
zψ0 =

z r
3 r!

�( r
3 + 1)

(∣∣∣∣2 cos r
π

3

∣∣∣∣ – | cos rπ |
)

(ψ0 �= 0), (25)

where ĉz acts on the vacuum ψ0.
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It follows from Eq. (25) that

eĉztψ0 = ezt3
. (26)

Using equations (6) and (26) in equation (12), we get the following umbral form of the
generating function of 3VHP Hn(x, y, z):

∞∑

n=0

Hn(x, y, z)
tn

n!
= e(x+b̂y+ĉz)tφ0ψ0, (27)

which on expanding the exponential function in the right-hand side and then comparing
the equal powers of t from both sides of the resultant equation gives the following umbral
definition of the 3-variable Hermite polynomials Hn(x, y, z):

Hn(x, y, z) = (x + b̂y + ĉz)nφ0ψ0

= e(ĉz+b̂y)Dx xnφ0ψ0

= eĉzDx Hn(x, y)ψ0,

where b̂y is acting on φ0 and ĉz is acting on ψ0.
The use of the above equation allows a significant simplification of the theory of 3VHP

Hn(x, y, z), and it would be largely exploited in the field of special functions. We note that
such a point of view has opened new avenues in the derivation of lacunary generating
functions and for the relevant combinatorial interpretation [12].

Now, we obtain the umbral definition and umbral operational definition of the 3-variable
generalised Hermite polynomials (3VgHP) H (s,m)

n (x, y, z).
In view of equation (25), we introduce the following generalised form of umbra ĉz :

sĉr
zψ0 =

z r
s r!

�( r
s + 1)

As,r , (28)

where

As,r =

⎧
⎨

⎩
1 r = sp, p ∈N,

0, otherwise.
(29)

If we take A3,r = (|2 cos r π
3 | – | cos rπ |), then for s = 3 equation (28) gives (25) and sĉzψ0

reduces to ĉzψ0.
By equation (28), we have

esĉztψ0 = ezts
. (30)

Using equations (23) and (30), we get

H (s,m)
n (x, y, z) = exp(sĉzDx)H (m)

n (x, y)ψ0, (31)
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which on further simplification gives umbral operational definition of 3VgHP H (s,m)
n (x, y, z)

as follows:

H (s,m)
n (x, y, z) = e(sĉz+mb̂y)Dx xnφ0ψ0

= exp(sĉzDx)(x + mb̂y)nφ0ψ0,

where mb̂y
r
φ0 and sĉz

r
ψ0 are defined in equations (17) and (28), respectively.

By using Crofton identity given in [9]

eλDm
x f (x) = f

(
x + mλDm–1

x
)
, (32)

we obtain 3VgHP H (s,m)
n (x, y, z) binomially as follows:

H (s,m)
n (x, y, z) = (x + mb̂y + sĉz)nφ0ψ0. (33)

In the next section, we generalise the 3-variable Hermite polynomial to 4-parameters 3-
variables Hermite polynomials arising from umbral method.

3 An extension of the 3-variable Hermite polynomials
It is realised that the advantage of umbral method is that this method serves as an impor-
tant extension of certain special functions that cannot be extended by using classical op-
erational method; see for example [14, 15]. In this section, by using the fact that the power
of these umbras can be any real numbers, we extend the 3-variable Hermite polynomials
to 4-parameter 3-variable Hermite polynomials by using the Hermite umbras given as b̂y

and ĉz in equations (5) and (25), respectively.
Further, we study the properties of the 4-parameter 3-variable Hermite polynomials

Hn(x, y, z|β ,α; p, q) and apply the umbral method to aforementioned polynomial.
We introduce the 4-parameter 3-variable Hermite polynomials (4P3VHP)
Hn(x, y, z|β ,α; p, q) given by

Hn(x, y, z|β ,α; p, q) = b̂β
y ĉp

z
(
x + b̂α

y + ĉq
z
)n

φ0ψ0, (34)

where α, β , p and q ∈N∪ {0}.
By equation (34), we have the following generating function for 4P3VHP Hn(x, y, z|β ,α;

p, q).

Theorem 3.1 The generating function of 4P3VHP Hn(x, y, z|β ,α; p, q) is given by

∞∑

n=0

Hn(x, y, z|β ,α; p, q)
tn

n!
= exty

β
2 e(α,β)

(
y

α
2 t

)
z

p
3 Ep,q

(
z

q
3 t

)
, (35)

where

Ep,q(x) =
∞∑

r=0

�(p + qr + 1)xr

�( p+qr
3 + 1)r!

(∣∣∣∣2 cos
(p + qr)π

3

∣∣∣∣ –
∣∣cos (p + qr)π

∣∣
)

. (36)
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Proof From equation (34), we have

∞∑

n=0

tn

n!
Hn(x, y, z|β ,α; p, q) =

∞∑

n=0

tn

n!
b̂β

y ĉp
z
(
x + b̂α

y + ĉq
z
)n

φ0ψ0

= b̂β
y ĉp

z e(x+b̂α
y +ĉq

z )tφ0ψ0.

Since it is obvious that [x+ b̂α
y , ĉq

z ] = 0 and [x, b̂α
y ] = 0 and using the Weyl decoupling identity

[9]

eÂ+B̂ = eÂeB̂e
–k
2 , k = [Â, B̂], (k ∈C) (37)

in the above equation, we find

∞∑

n=0

tn

n!
Hn(x, y, z|β ,α; p, q) = b̂β

y ĉp
z exteb̂α

y teĉq
z tφ0ψ0, (38)

which, on expanding the exponentials in the right-hand side, gives

∞∑

n=0

tn

n!
Hn(x, y, z|β ,α; p, q) = ext

∞∑

r=0

b̂αr+β
y tr

r!

∞∑

s=0

ĉp+qs
z ts

s!
φ0ψ0.

Now, using equations (5) and (25), we get

∞∑

n=0

tn

n!
Hn(x, y, z|β ,α; p, q)

= exty
β
2

∞∑

r=0

�(αr + β + 1)y αr
2 tr

�( αr+β

2 + 1)r!

∣∣∣∣cos

(
αr + β

2
π

)∣∣∣∣

× z
p
3

∞∑

s=0

�(p + qs + 1)z
qs
3 ts

�( p+qs
3 + 1)s!

(∣∣∣∣2 cosπ
(p + qs)

3

∣∣∣∣ –
∣∣cos (p + qs)π

∣∣
)

.

Using equations (10) and (36) in the right-hand side of the above equation, we get assertion
(35). �

Remark 3.1 The function Ep,q(x) is a generalisation of ex, as for p = 0 and q = 1 in equation
(36), we get E0,1(x) = ex3 .

Next, we obtain the following series definition for 4P3VHP Hn(x, y, z|β ,α; p, q).

Theorem 3.2 The series definition for 4P3VHP Hn(x, y, z|β ,α; p, q) is given by

Hn(x, y, z|β ,α; p, q) = n!
n∑

r=0

�(p + qr + 1)z
p+qr

3 Hn–r(x, y|β ,α)
�( p+qr

3 + 1)r!(n – r)!

×
(∣∣∣∣2 cos

(p + qr)π
3

∣∣∣∣ –
∣∣cos(p + qr)π

∣∣
)

, (39)
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where Hn–r(x, y|β ,α) denotes 2P2VHP given by means of the following generating function:

∞∑

n=0

Hn(x, y|β ,α)
tn

n!
= exty

β
2 e(α,β)

(
y

α
2 t

)
.

Proof From equation (38), we have

∞∑

n=0

tn

n!
Hn(x, y, z|β ,α; p, q) = b̂β

y ĉp
z e(x+b̂α

y )teĉqt
z φ0ψ0,

which, on expanding exponentials in the right-hand side of the above equation, gives

∞∑

n=0

tn

n!
Hn(x, y, z|β ,α; p, q) =

∞∑

n=0

b̂β
y
(
x + b̂α

y
)n tn

n!

∞∑

r=0

ĉp+qr
z

tr

r!
φ0ψ0

=
∞∑

n=0

n∑

r=0

b̂β
y (x + b̂α

y )n–r ĉp+qr
z tn

(n – r)!r!
φ0ψ0.

Using equations (8) and (25), we get

∞∑

n=0

tn

n!
Hn(x, y, z|β ,α; p, q) =

∞∑

n=0

n∑

r=0

�(p + qr + 1)z
p+qr

3 Hn–r(x, y|β ,α)
�( p+qr

3 + 1)r!(n – r)!

×
(∣∣∣∣2 cos

(p + qr)π
3

∣∣∣∣ –
∣∣cos(p + qr)π

∣∣
)

tn.

Comparing the equal powers of t from both sides of the above equation, we get assertion
(39). �

Further, we discuss an alternative formulation of the theory of the generalised Hermite
polynomials using umbral formalism, which will be embedded with the technique devel-
oped in this paper.

Now, we obtain the following result.

Theorem 3.3 The following formula for 4P3VHP Hn(x, y, z|β ,α; p, q) holds:

Hn+k(x, y, z|β ,α; p, q))

=
k∑

r=0

r∑

s=0

(
k
r

)(
r
s

)
xsHn

(
x, y, z|α(r – s) + β ,α; q(k – r) + p, q

)
. (40)

Proof From equation (34), we have

Hn+k(x, y, z|β ,α; p, q) = b̂β
y ĉp

z
(
x + b̂α

y + ĉq
z
)n+k

φ0ψ0

= b̂β
y ĉp

z
(
x + b̂α

y + ĉq
z
)k(x + b̂α

y + ĉq
z
)n

φ0ψ0.
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Expanding the first bracket of the right-hand side of the above equation binomially, we
have

Hn+k(x, y, z|β ,α; p, q)) = b̂β
y ĉp

z

k∑

r=0

(
k
r

)(
x + b̂α

y
)r ĉq(k–r)

z
(
x + b̂α

y + ĉq
z
)n

φ0ψ0.

Again, expanding the first bracket of the right-hand side of the above equation binomially,
we find

Hn+k(x, y, z|β ,α; p, q)) =
k∑

r=0

r∑

s=0

(
k
r

)(
r
s

)
xsb̂α(r–s)+β

y ĉq(k–r)+p
z

(
x + b̂α

y + ĉq
z
)n

φ0ψ0.

Using equation (34) in the right-hand side of the above equation, we get assertion
(40). �

For k = n, Theorem 3.3 gives the following result.

Corollary 3.1 The following index duplication formula for 4P3VHP
Hn(x, y, z|β ,α; p, q) holds:

H2n(x, y, z|β ,α; p, q)

=
n∑

r=0

r∑

s=0

(
n
r

)(
r
s

)
xsHn

(
x, y, z|α(r – s) + β ,α; q(n – r) + p, q

)
. (41)

Further, we obtain the following result.

Theorem 3.4 The following argument duplication formula for 4P3VHP Hn(x, y, z|β ,α; p, q)
holds:

Hn(2x, y, z|β ,α; p, q)) =
n∑

s=0

s∑

r=0

r∑

u=0

(
n
s

)(
s
r

)(
r
u

)
xu 1

2s–u

× Hn–s

(
x,

y
2

,
z
2
|α(r – u) + β ,α; q(s – r) + p, q

)
. (42)

Proof From equation (34), we have

Hn(2x, y, z|β ,α; p, q) = b̂β
y ĉp

z

[(
x +

b̂α
y

2
+

ĉq
z

2

)
+

(
x +

b̂α
y

2
+

ĉq
z

2

)]n

φ0ψ0,

which on simplification gives

Hn(2x, y, z|β ,α; p, q) = b̂β
y ĉp

z

n∑

s=0

(
n
s

)(
x +

b̂α
y

2
+

ĉq
z

2

)n–s(
x +

b̂α
y

2
+

ĉq
z

2

)s

φ0ψ0.
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Expanding the second bracket in right-hand side of the above equation binomially, we find

Hn(2x, y, z|β ,α; p, q)

= b̂β
y ĉp

z

n∑

s=0

s∑

r=0

(
n
s

)(
s
r

)(
x +

b̂α
y

2
+

ĉq
z

2

)n–s(
x +

b̂α
y

2

)r( ĉq
z

2

)s–r

φ0ψ0,

which on further simplification gives

Hn(2x, y, z|β ,α; p, q) = b̂β
y ĉp

z

n∑

s=0

s∑

r=0

r∑

u=0

(
n
s

)(
s
r

)(
r
u

)
xu

( b̂α
y

2

)r–u( ĉq
z

2

)s–r

×
(

x +
b̂α

y

2
+

ĉq
z

2

)n–s

φ0ψ0.

Using equation (34) in the right-hand side of the above equation, we get assertion (42). �

Now, we find the following series representation of the 4-parameter 2-variable Hermite
polynomials in terms of the 4-parameter 3-variable Hermite polynomials.

Theorem 3.5 The series definition of 4P2VHP Hn(x, y|β ,α; p, q) is given by

Hn(x, y|β ,α; p, q) =
n∑

r=0

(
n
r

)
(–1)rHn–r(x, y, z|β ,α; p + qr, q). (43)

Proof From equation (34), we have

Hn(x, y|β ,α; p, q) = b̂β
y ĉp

z
(
x + b̂α

y + ĉq
z – ĉq

z
)n

φ0ψ0, (44)

from which, on expanding binomially, we get

Hn(x, y|β ,α; p, q) = b̂β
y ĉp

z

n∑

r=0

(
n
r

)
(–1)r(x + b̂α

y + ĉq
z
)n–rĉqr

z φ0ψ0. (45)

Using equation (34) in the above equation we get assertion (43). �

Remark 3.2 For taking p = 0 and q = 1 in equation (44) of Theorem 3.5, we get the follow-
ing series representation of 2P2VHP Hn(x, y, |β ,α):

Hn(x, y|β ,α) =
n∑

r=0

(
n
r

)
(–1)rHn–r(x, y, z|β ,α; r, 1). (46)

Remark 3.3 For taking β = 0, α = 1, p = 0 and q = 1 in equation (44) of Theorem 3.5, we
get the following series representation of 2VHP Hn(x, y):

Hn(x, y) =
n∑

r=0

(
n
r

)
(–1)rHn–r(x, y, z|–, 1; r, 1). (47)
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Now, we obtain the operational definition of 4P3VHP Hn(x, y, z|β ,α; p, q).
Since DxHn(x, y) = nHn–1(x, y) and DxHn(x, y, z) = nHn–1(x, y, z), it can be verified that

Hn(x, y, z|β ,α; p, q) = y
β
2 e(α,β)

(
y

α
2 Dx

)
z

p
3 Ep,q

(
z

q
3 Dx

)
xn,

and for taking α = 1 and β = 0, we have

Hn(x, y, z|–, 1; p, q) = z
p
3 Ep,q

(
z

q
3 Dx

)
Hn(x, y).

In the next section, we consider some special cases of the results established in this section.

4 Special cases
In this section, we obtain certain new as well as known special polynomials by using suit-
able choices for parameters and variable z in equations (34), (35) and (39) as special cases
of 4-parameter 3-variable Hermite polynomials.

In the following table, the umbral definitions, generating functions and series definitions
of certain polynomials are listed.

For the same choices of parameters α, β , p and q considered in Table 1, equations (41)
and (42) give the index duplication and argument duplication formulas for the special
polynomials mentioned in the same table. The respective formulas are listed in Table 2.

In the concluding remarks, we present further argument supporting the effectiveness of
the umbral method.

Table 1 Some new and known special polynomials

S. No. Para-
meters

Polynomials Umbral definition Generating function Series definition

I. q = 1 Hn (x, y, z|β ,α;p, 1) b̂
β
y ĉ

p
z (x + b̂αy + ĉz )nφ0ψ0 exty

β
2 e(α,β) (y

α
2 t)z

p
3 Ep,1(z

1
3 t) n!

∑n
r=0

�(p+r+1)z
p+r
3 Hn–r (x,y|β ,α)

�( p+r3 +1)r!(n–r)!
×

(|2cos (p+r)π3 | – | cos(p + r)π |)

II. α = 1 Hn (x, y, z|β , 1;p,q) b̂
β
y ĉ

p
z (x + b̂y + ĉ

q
z )
nφ0ψ0 exty

β
2 e(1,β) (y

1
2 t)z

p
3 Ep,q (z

q
3 t) n!

∑n
r=0

�(p+qr+1)z
p+qr
3 Hn–r (x,y|β ,1)

�( p+qr3 +1)r!(n–r)!
×

(|2cos (p+qr)π3 | – | cos(p + qr)π |)

III. α = 1;
q = 1

Hn (x, y, z|β , 1;p, 1) b̂
β
y ĉ

p
z (x + b̂y + ĉz )nφ0ψ0 exty

β
2 e(1,β) (y

1
2 t)z

p
3 Ep,1(z

1
3 t) n!

∑n
r=0

�(p+r+1)z
p+r
3 Hn–r (x,y|β ,1)

�( p+r3 +1)r!(n–r)!
×

(|2cos (p+r)π3 | – | cos(p + r)π |)

IV. p = 0 Hn (x, y, z|β ,α; –,q) b̂
β
y (x + b̂αy + ĉ

q
z )
nφ0ψ0 exty

β
2 e(α,β) (y

α
2 t)E0,q (z

q
3 t) n!

∑n
r=0

�(qr+1)z
qr
3 Hn–r (x,y|β ,α)

�( qr3 +1)r!(n–r)!
×

(|2cos (qr)π3 | – | cos(qr)π |)

V. p = 0;
q = 1

Hn (x, y, z|β ,α; –, 1) b̂
β
y (x + b̂αy + ĉz )nφ0ψ0 exty

β
2 e(α,β) (y

α
2 t)ezt

3
n!

∑ n
3
r=0

zrHn–3r (x,y|β ,α)
r!(n–3r)!

VI. α = 1;
p = 0

Hn (x, y, z|β , 1; –,q) b̂
β
y (x + b̂y + ĉ

q
z )
nφ0ψ0 exty

β
2 e(1,β) (y

1
2 t)E0,q (z

q
3 t) n!

∑n
r=0

�(qr+1)z
qr
3 Hn–r (x,y|β ,1)

�( qr3 +1)r!(n–r)!
×

(|2cos (qr)π3 | – | cos(qr)π |)

VII. α = 1;
p = 0;
q = 1

Hn (x, y, z|β , 1; –, 1) b̂
β
y (x + b̂y + ĉz )nφ0ψ0 exty

β
2 e(1,β) (y

1
2 t)ezt

3
n!

∑[ n3 ]
r=0

zrHn–3r (x,y|β ;1)
r!(n–3r)!

VIII. β = 0 Hn (x, y, z|–,α;p,q) ĉ
p
z (x + b̂αy + ĉ

q
z )
nφ0ψ0 exte(α,0)(y

α
2 t)z

p
3 Ep,q (z

q
3 t) n!

∑n
r=0

�(p+qr+1)z
p+qr
3 Hn–r (x,y|–,α)

�( p+qr3 +1)r!(n–r)!
×

(|2cos (p+qr)π3 | – | cos(p + qr)π |)
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Table 1 (Continued)

S. No. Para-
meters

Polynomials Umbral definition Generating function Series definition

IX. β = 0;
q = 1

Hn (x, y, z|–,α;p, 1) ĉ
p
z (x + b̂αy + ĉz )nφ0ψ0 exte(α,0)(y

α
2 t)z

p
3 Ep,1(z

1
3 t) n!

∑n
r=0

�(p+r+1)z
p+r
3 Hn–r (x,y|–,α)

�( p+r3 +1)r!(n–r)!
×

(|2cos (p+r)π3 | – | cos(p + r)π |)

X. α = 1;
β = 0

Hn (x, y, z|–, 1;p,q) ĉ
p
z (x + b̂y + ĉ

q
z )
nφ0ψ0 ext+yt

2
z
p
3 Ep,q (z

q
3 t) n!

∑n
r=0

�(p+qr+1)z
p+qr
3 Hn–r (x,y)

�( p+qr3 +1)r!(n–r)!
×

(|2cos (p+qr)π3 | – | cos(p + qr)π |)

XI. α = 1;
β = 0;
q = 1

Hn (x, y, z|–, 1;p, 1) ĉ
p
z (x + b̂y + ĉz )nφ0ψ0 ext+yt

2
z
p
3 Ep,1(z

1
3 t) n!

∑n
r=0

�(p+r+1)z
p+r
3 Hn–r (x,y)

�( p+r3 +1)r!(n–r)!
×

(|2cos (p+r)π3 | – | cos(p + r)π |)

XII. β = 0;
p = 0

Hn (x, y, z|–,α; –,q) (x + b̂αy + ĉ
q
z )
nφ0ψ0 exte(α,0)(y

α
2 t)E0,q (z

q
3 t) n!

∑n
r=0

�(qr+1)z
qr
3 Hn–r (x,y|–,α)

�( qr3 +1)r!(n–r)!
×

(|2cos (qr)π3 | – | cos(qr)π |)

XIII. β = 0;
p = 0;
q = 1

Hn (x, y, z|–,α; –, 1) (x + b̂αy + ĉz )nφ0ψ0 exte(α,0)(y
α
2 t)ezt

3
n!

∑[ n3 ]
r=0

zrHn–3r (x,y|–,α)
r!(n–3r)!

XIV. α = 1;
β = 0;
p = 0

Hn (x, y, z|–, 1; –,q) (x + b̂y + ĉ
q
z )
nφ0ψ0 ext+yt

2
E0,q (z

q
3 t) n!

∑n
r=0

�(qr+1)z
qr
3 Hn–r (x,y)

�( qr3 +1)r!(n–r)!
×

(|2cos (qr)π3 | – | cos(qr)π |)

XV. α = 1;
β = 0;
p = 0;
q = 1

Hn (x, y, z) (x + b̂y + ĉz )nφ0ψ0 e(xt+yt
2+zt3) [6] n!

∑[ n3 ]
r=0

zrHn–3r (x,y)
r!(n–3r)! [6]

XVI. p = 0;
q = 0;
z = 0

Hn (x, y|β ,α) b̂
β
y (x + b̂αy )nφ0 [8] exty

β
2 e(α,β) (y

α
2 t) [8] n!

∑n
r=0

�(αr+β+1)xn–r y
αr+β
2

�( αr+β
2 +1)r!(n–r)!

×

|(cos αr+β
2 π )|

XVII. p = 0;
q = 0;
α = 1;
z = 0

Hn (x, y|β , 1) b̂
β
y (x + b̂y )nφ0 exty

β
2 e(1,β) (y

1
2 t) n!

∑n
r=0

�(r+β+1)xn–r y
r+β
2

�( r+β
2 +1)r!(n–r)!

×

|(cos r+β
2 π )|

XVIII. β = 0;
p = 0;
q = 0;
z = 0

Hn (x, y|–,α) (x + b̂αy )nφ0 exte(α,0)(y
α
2 t) n!

∑n
r=0

�(αr+1)xn–r y
αr
2

�( αr2 +1)r!(n–r)!
× |(cos αr

2 π )|

XIX. β = 0;
p = 0;
α = 1;
q = 0;
z = 0

Hn (x, y) (x + b̂y )nφ0 [8] ext+yt
2
[2] n!

∑ n
2
r=0

xn–2r yr
r!(n–2r)! [2]

5 Concluding remarks
Gaussian integral representation of Hermite polynomials as well as specific umbral meth-
ods play an important role in classical problems arising in quantum optics, quantum me-
chanics, biomathematics and engineering (see for example [1, 17–20]). They are exploited
to calculate the optical mode overlapping and transition rates between quantum eigen-
states of the harmonic oscillator. A general method allowing the direct evaluation of these
integrals has not been developed. Babusci et al. described a unifying method, flexible for
generalisation, which provides a direct method for the evaluation of this class of integrals
[4, 5].
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Table 2 Index and argument duplication formulas

S. No. Polynomials Index duplication formula Argument duplication formula

I. Hn(x, y, z|β ,α;p, 1) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|α(r – s) + β ,α;p + n – r, 1)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |α(r – u) + β ,α; s – r + p, 1)

II. Hn(x, y, z|β , 1;p,q) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|r – s + β , 1;q(n – r) + p,q)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |r – u + β , 1;q(s – r) + p,q)

III. Hn(x, y, z|β , 1;p, 1) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|r – s + β , 1;n – r + p, 1)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |r – u + β , 1; s – r + p, 1)

IV. Hn(x, y, z|β ,α; –,q) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|α(r – s) + β ,α;q(n – r),q)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |α(r – u) + β ,α;q(s – r),q)

V. Hn(x, y, z|β ,α; –, 1) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|α(r – s) + β ,α;n – r, 1)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xs–r–u 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |α(r – u) + β ,α; s – r, 1)

VI. Hn(x, y, z|β , 1; –,q) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|r – s + β , 1;q(n – r),q)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |r – u + β , 1;q(s – r),q)

VII Hn(x, y, z|β , 1; –, 1) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|r – s + β , 1;n – r, 1)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |r – u + β , 1; s – r, 1)

VIII. Hn(x, y, z|–,α;p,q) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|α(r – s),α;q(n – r) + p,q)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |α(r – u),α;q(s – r) + p,q)

IX. Hn(x, y, z|–,α;p, 1) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|α(r – s),α;n – r + p, 1)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |α(r – u),α; s – r + p, 1)

X. Hn(x, y, z|–, 1;p,q) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|r – s, 1;q(n – r) + p,q)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |r – u, 1;q(s – r) + p,q)

XI. Hn(x, y, z|–, 1;p, 1) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|r – s, 1;n – r + p, 1)

∑n
s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |r – u, 1; s – r + p, 1)

XII. Hn(x, y, z|–,α; –,q) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|α(r – s),α;q(n – r),q) ∑n

s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |α(r – u),α;q(s – r),q)

XIII. Hn(x, y, z|–,α; –, 1) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|α(r – s),α;n – r, 1) ∑n

s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |α(r – u),α; s – r, 1)

XIV. Hn(x, y, z|–, 1; –,q) ∑n
r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|r – s, 1;q(n – r),q) ∑n

s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |r – u, 1;q(s – r),q)

XV. Hn(x, y, z)
∑n

r=0

∑r
s=0

(n
r

)(r
s

)
xsHn(x, y, z|r – s, 1;n – r, 1) ∑n

s=0

∑s
r=0

∑r
u=0

(n
s

)(s
r

)( r
u

)
xu 1

2s–u ×
Hn–s(x,

y
2 ,

z
2 |r – u, 1; s – r, 1)

XVI. Hn(x, y|β ,α) ∑n
r=0

(n
r

)
xrHn(x, y|α(n – r) + β ,α)

∑n
s=0

∑s
r=0

(n
s

)(s
r

)
xr 1

2s–r ×
Hn–s(x,

y
2 |α(s – r) + β ,α)

XVII. Hn(x, y|β , 1) ∑n
r=0

(n
r

)
xrHn(x, y|n – r + β , 1)

∑n
s=0

∑s
r=0

(n
s

)(s
r

)
xr 1

2s–r × Hn–s(x,
y
2 |s –

r + β , 1)

XVIII. Hn(x, y|–,α) ∑n
r=0

(n
r

)
xrHn(x, y|α(n – r),α) ∑n

s=0

∑s
r=0

(n
s

)(s
r

)
xr 1

2s–r ×
Hn–s(x,

y
2 |α(s – r),α)

XIX. Hn(x, y)
∑n

r=0

(n
r

)
xn–rHn(x, y|r) [8] ∑n

s=0

∑s
r=0

(n
s

)(s
r

)
xr 1

2s–r ×Hn–s(x,
y
2 |s– r)

[8]

We consider the following integral:

In =
∫ ∞

–∞
Hn(ax + b, y, z|β ,α; p, q)e–cx2+ξx dx. (48)

By equation (48), we have

∞∑

n=0

In
tn

n!
=

∞∑

n=0

∫ ∞

–∞
Hn(ax + b, y, z|β ,α; p, q)

tn

n!
e–cx2+ξx dx,
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which on using equation (35) gives

∞∑

n=0

In
tn

n!
= ebty

β
2 e(α,β)

(
y

α
2 t

)
z

p
3 Ep,q

(
z

q
3 t

)∫ ∞

–∞
e(at+ξ )x–cx2

dx. (49)

Since
∫ ∞

–∞
ebx–ax2+c dx =

√
π√
a

e
b2
4a +c,

see [5], presenting the Gaussian integral, we find

∞∑

n=0

In
tn

n!
= ebty

β
2 e(α,β)

(
y

α
2 t

)
z

p
3 Ep,q

(
z

q
3 t

)√
π√
c

exp

(
a2

4c
t2 +

ξ 2

4c
+

aξ

2c
t
)

. (50)

Using equations (1) and (35) in the right-hand side of the above equation, we obtain

∞∑

n=0

In
tn

n!
=

√
π√
c

exp

(
ξ 2

4c

) ∞∑

n=0

∞∑

r=0

Hn(b, y, z|β ,α; p, q)Hr

(
aξ

2c
,

a2

4c

)
tn+r

n!r!
.

Next, comparing the equal powers of t from both sides of the above equation, we get

In =
√

π√
c

exp

(
ξ 2

4c

) n∑

r=0

(
n
r

)
Hn–r(b, y, z|β ,α; p, q)Hr

(
aξ

2c
,

a2

4c

)
. (51)

In view of equations (48) and (51), we get the following result:

∫ ∞

–∞
Hn(ax + b, y, z|β ,α; p, q)e–cx2+ξx dx

=
√

π√
c

exp

(
ξ 2

4c

)
×

n∑

r=0

(
n
r

)
Hn–r(b, y, z|β ,α; p, q)Hr

(
aξ

2c
,

a2

4c

)
.

Again, using equation (35) in the right-hand side of equation (50), we find

∞∑

n=0

In
tn

n!
=

√
π√
c

exp

(
ξ 2

4c

) ∞∑

n=0

∞∑

r=0

Hn

(
b +

aξ

2c
, y, z|β ,α; p, q

)
a2r

(4c)r
tn+2r

n!r!
.

Comparing the equal powers of t from both sides of the above equation, we get

In =
√

π√
c

exp

(
ξ 2

4c

)
n!

[ n
2 ]∑

r=0

1
(n – 2r)!r!

Hn–2r

(
b +

aξ

2c
, y, z|β ,α; p, q

)
a2r

(4c)r . (52)

In view of equations (48) and (52), we get the following result:

∫ ∞

–∞
Hn(ax + b, y, z|β ,α; p, q)e–cx2+ξx dx

=
√

π√
c

exp

(
ξ 2

4c

)
n! ×

[ n
2 ]∑

r=0

1
(n – 2r)!r!

Hn–2r

(
b +

aξ

2c
, y, z|β ,α; p, q

)
a2r

(4c)r .
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Similarly, for the same choices of parameters α, β , p and q considered in Table 1, we can
evaluate the integrals involving the special polynomials mentioned in the same table.
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