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A B S T R A C T

Photovoltaic (PV) power generation is one of the remarkable energy types to provide clean and sustainable
energy. Therefore, rapid fault detection and classification of PV modules can help to increase the reliability of
the PV systems and reduce operating costs. In this study, an efficient PV fault detection method is proposed to
classify different types of PV module anomalies using thermographic images. The proposed method is designed
as a multi-scale convolutional neural network (CNN) with three branches based on the transfer learning
strategy. The convolutional branches include multi-scale kernels with levels of visual perception and utilize
pre-trained knowledge of the transferred network to improve the representation capability of the network. To
overcome the imbalanced class distribution of the raw dataset, the oversampling technique is performed with
the offline augmentation method, and the network performance is increased. In the experiments, 11 types of
PV module faults such as cracking, diode, hot spot, offline module, and other classes are utilized. The average
accuracy is obtained as 97.32% for fault detection and 93.51% for 11 anomaly types. The experimental results
indicate that the proposed method gives higher classification accuracy and robustness in PV panel faults and
outperforms the other deep learning methods and existing studies.
. Introduction

As the continuous consumption of fossil fuels has caused serious dis-
ases, environmental pollution, and distributing the ecological balance,
enewable energy sources (RESs) such as solar, wind, hydroelectric,
nd geothermal energy have started to attract great attention all over
he world (Acikgoz, 2022; Korkmaz, 2021; Korkmaz et al., 2021).
part from the ecological effects, the global demand for electrical
nergy production and consumption has also increased the interest of
ESs. Therefore, the use of renewable and low-carbon energy sources
lays a significant role in supplying electrical energy demands for
ustainable and environmentally friendly energy production (Ahmed
t al., 2021; Ali et al., 2020). One of the remarkable and clean RES
ypes is solar energy systems. Solar energy systems have the global
rimary energy demand of approximately 24% and have led to in-
reasing global renewable energy investment accounting for 57% of the
lobal investment in recent years (Rahaman et al., 2020). Solar power
eneration is generally provided with photovoltaic (PV) systems. PV
ystems have also drawn attention with their advantages such as being
nvironmentally friendly, safe energy production, noiseless operation,
nd low installation costs (Li et al., 2021; Tang et al., 2020). While
he annual average growth rate of solar energy is 50.2% between 2007
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and 2017, the International Renewable Energy Agency reported that
the global installed capacity of PV systems reached 400 GW in 2017
and 580 GW in 2019, showing an average increment of 45% in just
two years (Acikgoz, 2022; Rahaman et al., 2020). Consequently, the
installation of PV generation plants has been rapidly increasing every
year, and investors, governments, and international organizations have
a rapid adoption in PV power plants.

In PV plants, losses of electricity production are generally caused by
the presence of various anomalies influencing the operation systems.
These anomalies cause both reduced efficiency and electrical risks for
operators in PV systems (Ali et al., 2020; Manno et al., 2021). The
various anomalies also seriously affect the reliability and safety of the
system operation (Cai et al., 2022, 2021, 2020). As PV systems are
exposed to the harsh outdoor environmental effects, PV modules can
be adversely affected by weather conditions such as temperature, rain,
wind, etc., or by mechanical damages during transportation and instal-
lation. These damages could shorten the lifetime of the PV modules. In
addition, environmental pollution by heavy metals may occur due to
the discharge of PVs, which adversely affects recycling in nature (Aziz
et al., 2020; Le et al., 2021). Therefore, automatic anomaly detection of
PV modules in PV power plants ensures correct maintenance and fast
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detection of plant faults and is a key solution to increase the reliability
and durability of power generation (Haque et al., 2019; Rico Espinosa
et al., 2020).

In recent years, various studies have been examined to classify
anomalies of PV panel faults. Existing studies can be divided into two
main groups as use of electrical measurements to detect faults (Aziz
et al., 2020; Dhibi et al., 2020) and the use of thermography images for
visual inspection (Fonseca Alves et al., 2021; Kirsten Vidal de Oliveira
et al., 2020). Electrical measurement-based approaches are performed
with a variety of methods, the most popular of which are model-
based analysis and data-driven methods (Li et al., 2021). However,
some failures that may occur in PV panels cause changes in current–
voltage (I–V) curves that can hardly be detected. While this makes
anomaly classification difficult, it also increases the time-consuming
and installation cost of the fault detection system (Fernández et al.,
2020; Huerta Herraiz et al., 2020; Tang et al., 2020). The use of visual
anomaly classification makes it more simplify the monitoring and main-
tenance of the systems and provides low operation costs (Fonseca Alves
et al., 2021; Le et al., 2021). With the development of artificial in-
telligence, deep-learning-based automatic detection and classification
of anomalies from thermographic PV images has become more effi-
cient and accurate (Huerta Herraiz et al., 2020; Manno et al., 2021;
Otamendi et al., 2021). On the contrary machine learning techniques,
deep learning has higher feature extraction and learning capabilities
to achieve more accurate and robust classification performance. In
addition, deep learning models can provide nonlinear representation
and generalization capabilities for big data.

Different studies about PV panel fault detection and classification
have been proposed in the literature. Ali et al. (2020) proposed a hybrid
features-based support vector machine (SVM) model using infrared
thermography technique for hotspot detection and classification into
three different classes as healthy, non-faulty hotspot, and faulty. The
hybrid feature vector consisting of RGB, texture, the histogram of
oriented gradient, and the local binary pattern was formed using a
data fusion approach. The experimental results gave in 96.8% training
accuracy and 92% testing accuracy. Tang et al. (2020) proposed a
convolutional neural network (CNN) model-based fault detection of
PV modules using a large number of high-quality electroluminescence
image generation methods for the limit of samples. Conventional image
processing and the generative adversarial network characteristics were
used for the image generation method. The results obtained as 84%,
82%, 81%, and 83% of accuracies for defect-free, micro-crack, finger-
interruption, and break defect types, respectively. Manno et al. (2021)
designed a CNN model for the automatic classification of thermo-
graphic images into two classes as a hotspot and operating. Various
pre-processing techniques were also evaluated to reduce image noise.
Considering a dataset that refers to different acquisition protocols,
they reached a model accuracy of 99%. Le et al. (2021) designed a
deep neural network model to classify solar module anomalies using
thermographic images in the same unbalanced dataset. A residual
network structure and ensemble technique were used to design the
classification network. The results achieved an average accuracy of
94% and correctly classify twelve anomaly types on an average of
86%. Rico Espinosa et al. (2020) proposed an automatic fault classifi-
cation method for PV plants using CNNs for semantic segmentation and
classification from RGB images. The results were obtained an average
accuracy of 75% for two classes as a fault and no-fault, and 70% for
four classes as no-fault, cracks, shadows, and dust. Fonseca Alves et al.
(2021) proposed a CNN-based fault detection method to classify eleven
different anomaly classes in PV modules through thermographic images
in an unbalanced dataset. The effect of data augmentation techniques
was investigated to increase the performance of the designed method.
Through a cross-validation method, the testing accuracy was obtained
as 92.5% for the anomaly detection and 78.85% to classify defects for
eight selected classes. In another study, a region-based CNN model was
designed and relative hot regions were detected with an accuracy of
2

99.02% (Huerta Herraiz et al., 2020). Otamendi et al. (2021) proposed
an end-to-end deep learning approach to detect, locate and segment
cell level anomalies with an average accuracy of 84% for defective
and non-defective classes. A deep learning and feature-based approach
to detect and classify defective photovoltaic modules using thermal
infrared images in a South African setting were analyzed by Dunderdale
et al. (2020). The scale-invariant feature transform (SIFT) descriptor
combined with a random forest classifier was used to identify defec-
tive photovoltaic modules. The feature-based methodology achieved
an accuracy of 91.2% between defective and non-defective modules.
Wang et al. (2021) integrated image processing and statistical machine
learning techniques for online analysis of the raw video streams of
aerial thermography. The transform invariant low-rank textures (TILT)
method was used to crop out the background and the robust principal
component analysis (RPCA) was applied to separate sparse corrupted
anomalous components from a low-rank background. The authors de-
tected the anomalies with a sensitivity of 80%. Cipriani et al. (2020)
developed an innovative approach by a CNN model to classify the dust
and hotspot anomalies related to photovoltaic systems through the use
of thermographic images. They distinguished the hotspot conditions
from the dust with an accuracy of 98%. In another study, ResNet-50
was used to classify ten common module anomalies from thermo-
graphic UAV videos. They handled the large amounts of thermographic
images acquired during inspection of PV plants, extracted individual PV
modules, and classified with an accuracy of more than 90% (Bommes
et al., 2021). According to the current literature, deep learning-based
models, especially CNNs, provide appropriate classification results.
However, there are some open topics. First, the classification accuracies
have not still superior for PV module anomalies and the average
classification accuracies should be improved by over 90% for multi-
class anomalies. Secondly, many studies have focused on datasets with
either 2-class (Anomaly/No-Anomaly), 3-class, or 4-class. As the PV
panels could be affected by harsh outdoor environments, there can
occur various types of anomalies as cracking, diode, multi diode, hot
spot, multi hot spot, soiling, vegetation, and etc. Therefore, extensive
datasets can still be studied by designing new types of CNNs to increase
the number of anomaly classes and their accuracy performance.

To bridge the aforementioned gaps in the current literature, a novel
and effective multi-scale CNN architecture-based PV anomaly detection
method to classify PV module faults is proposed in this paper. This
architecture classifies the different types of damages in the PV modules
using a thermographic image dataset collected from real large-scale PV
farms. The dataset is one of the largest publicly available datasets that
includes 11 types of anomalies as cracking, diode, hot spot, soiling,
vegetation, and other classes. The multi-scale CNN model combines
the transfer learning strategy with a designed three-branched structure.
Since low-level convolutions have small-sized filters, two new convolu-
tional branches are proposed and connected to low-level convolutions
in parallel. The branch structure includes low, middle, and high-level
convolutional kernel sizes to extract multiple-scale spectral features
from the input images with few self-parameters and strong general-
ization ability. Subsequently, the obtained features are concatenated
as the subset feature vector and fed to the last low-level convolution
to reduce the output dimension. The proposed CNN model is based
on the AlexNet architecture and utilizes its representation capability.
The main reason for using this model is that it provided successful
performance in ImageNet challenging competition. In addition, the
oversampling method is performed with offline augmentation to over-
come the imbalanced class distribution of the raw dataset and increase
the generalization capability of the network performance. In the exper-
iments, the obtained results are compared with various deep learning
methods and the existing state-of-the-art studies to evaluate the effec-
tiveness of the proposed method. As a result, this study contributes to
the existing literature by emphasizing the effectiveness of the multiple-
scale feature extraction, the improvement of the network performance
with offline augmentation, and increasing the performance of the fault
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classification in PV modules on the largest multi-class dataset. The
ovelty and main contributions of this paper can be summarized
s follows:

• A novel multi-scale CNN model is proposed to achieve robust
and high classification performance in PV panels. The pro-
posed method is a combination of the transfer learning strategy
with a designed three-branched structure. Therefore, convolu-
tional kernels can extract multiple-scale deep features with differ-
ent levels of visual perception. This structure gives the competi-
tive accuracy improvement to classify large-scale anomaly classes
in PV modules through thermographic images. The proposed
method also outperforms related existing studies.

• The proposed method is validated with different solar PV
plants. Although most of the literature studies focus on the anal-
ysis of individual PV panels or plants, the used publicly available
dataset was collected from 6 continents and includes real-world
infrared PV images. Therefore, the generalization capability of the
proposed method is increased.

• The frequently encountered faults in PV modules operating
in an array are identified and classified. Many studies have
only focused on 2-class (Anomaly/No-Anomaly), 3-class, or 4-
class. However, common panel faults in PV systems could be
caused by multiple cells, diodes, and hotspots. Blocked sunlight,
vegetation, and soiling also negatively affect the operation of
panels. Hence, the comprehensive classification is performed with
11 types of faults and No-Anomaly classes.

The remainder of the paper is structured as follows: Section 2
resents the materials and methods with details of the dataset descrip-
ion, the general framework of the proposed method, CNN architecture,
nd dataset improvement with augmentation. In Section 3, the exper-
ments, findings of the study, and comparisons are given. Finally, the
onclusion of the study is briefed in Section 4.

. Materials and methods

To prevent energy loss and provide early fault diagnosis in solar
V systems, an intelligent decision-making mechanism can be devel-
ped by using artificial intelligence-based approaches. Contrary to
onventional machine learning algorithms, CNN architectures can give
ffective solutions to classification problems with their strong self-
earning abilities and state-of-the-art performances. A convolutional
etwork consists of a chain of convolutions, normalization operations,
ooling layers, and dense layers. Convolution layers convolute their
nputs using filters and transfer the outputs to the activation functions.
ooling layers reduce the dimension of the inputs coming from activa-
ions with a statistic of nearby cells. Therefore, more learned features
an be extracted and the feature representation ability of the network
an be improved (Manno et al., 2021). Considering these powerful
eatures of CNNs, a novel and robust CNN-based PV fault classification
ethod is proposed. The designed deep classification network aims

o effectively classify thermographic panel anomalies by extracting
istinctive visual properties. The proposed method may assist in pro-
iding reliable anomaly detections with consideration for the safety and
conomic operation of solar power systems. The following subsections
resent the dataset description, framework of the proposed method,
ulti-scale CNN architecture, and offline augmentation for network

mprovement in detail.

.1. Infrared solar modules dataset description

There are many different faults that PV panels may encounter dur-
ng the operation periods. The occurrence of insect traces, shadowing
f panels due to buildings, vegetation formation, incompatibility of PV

ells, panel cracks, diode failures, panel pollution, and diverse weather

3

onditions such as snow are frequently encountered anomalies. There-
ore, a distinctive and publicly available dataset namely the Infrared
olar Modules dataset (Matthew et al., 2020) is selected to provide a
omprehensive classifier architecture. The dataset includes real-world
hermographic infrared PV images of various anomalies found in solar
ystems. The data is collected by the Raptor Maps Inc team with
iloted aircraft and unmanned aerial systems, using mid-wave and
ong-wave infrared (3–13.5 μm) camera modules. The resolution varies

from 3.00 to 15.00 cm/pixel. Each anomaly is cropped to the individual
module and the whole data is separated into twelve unique classes
(Fonseca Alves et al., 2021).

The dataset contains 20,000 images with 24 × 40 resolution and
8-bit depth in one channel. There are 11 different anomaly classes
and one nominal module (No-Anomaly) class. The dataset includes a
total of 10,000 images for anomaly classes and 10,000 images for No-
Anomaly class. Table 1 describes the dataset and number of each class.
The number of anomaly samples varies from 175 to 1877 images in
the dataset. While 50% of samples represent only nominal modules,
the rest of the samples contain 11 different anomalies. Although the
imbalanced structure of the class distribution is a major challenge
for the classification, the proportion of the classes is determined by
considering the total existing global findings. Therefore, the dataset
contains a rich presentation of the related PV panel defects, faults, and
findings. Fig. 1 shows the randomly selected image samples from the
dataset. In this figure, it is noted that the samples are colored for only
visualization. Some classes can be easily observed such as Cell, Hot-
Spot, and Diode, while some are difficult to distinguish. Therefore, it is
necessary to detect panel anomalies rapidly and easily with an effective
network design without the need for expert intervention.

2.2. Framework of the proposed method

The general structure of the proposed PV anomaly classification
method is presented in Fig. 2. The proposed method provides the
classify faults in PV modules obtained from thermographic images and
it consists of two main processes: offline data augmentation for the
network improvement and transfer learning-based network training
and testing. Although the used dataset includes a big part of 10,000
No-Anomaly class images, some classes have fewer samples. Therefore,
offline augmentation is performed to prevent the imbalanced class
distribution and increase the generalization capability of the network.
The offline augmentation method is a sample duplication technique
that increases the training set while preserving the original labels. Also,
dataset initialization is employed for data split. Training and validation
sets are set as the inputs of the training phase and the test set is
used for the testing phase. After the pre-processing, transfer learning-
based network architecture is constructed to extract multi-scale feature
maps. For transfer learning, the pre-trained AlexNet architecture is used
and two new branches with different convolutional kernel sizes are
added. This approach can reuse the convolutional weight parameters
of the pre-trained network to enhance the representation capability and
classification accuracy.

For optimization of the network, the stochastic gradient descent
(SGD) algorithm is performed to extract the convolutional kernels
during the back-propagation process. After training, the multi-scale
CNN model learns to extract high-level features to classify anomalies
with strong representation capability.

2.3. Multi-scale CNN architecture

Although training a CNN from scratch requires a large data size, it
is difficult to organize a large dataset of relevant problems. In many ap-
plications, CNNs have large initialized parameters and the related tasks
may not have big data to prevent over-fitting. Training and testing data
matching is also a complicated process. Therefore, transfer learning is

widely used to aid optimize model performance. Transfer learning is
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Table 1
Classes and anomaly descriptions (Matthew et al., 2020).

Class name Number of images Description

Cell 1877 Hot spot occurring with square geometry in single cell.
Cell-Multi 1288 Hot spots occurring with square geometry in multiple cells.
Cracking 940 Module anomaly caused by cracking on the module surface.
Diode 1499 Activated bypass diode, typically 1/3 of the module.
Diode-Multi 175 Multiple activated bypass diodes, typically affecting 2/3 of

module.
Hot-Spot 249 Hot spot on a thin-film module.
Hot-Spot-Multi 246 Multiple hot spots on a thin-film module.
Offline-Module 827 The entire module is heated.
Shadowing 1056 Sunlight obstructed by vegetation, man-made structures, or

adjacent rows.
Soiling 204 Dirt, dust, or other debris on surface of module.
Vegetation 1639 Panels blocked by vegetation.
No-Anomaly 10,000 Nominal solar module.

12-Class 20,000 Total
Fig. 1. Randomly selected class samples from the dataset.
one of the well-known methods in which knowledge obtained with an
already-trained model is utilized to learn other relevant datasets (Han
et al., 2018; Pan and Yang, 2010). Given a source domain, the base
model is trained for a specific task (𝑇𝑠) on its dataset (𝑋𝑠) and then
the trained model is transferred to the target task (𝑇𝑡) to re-train with
the target data (𝑋𝑡) using the knowledge in 𝑇𝑠 and 𝑋𝑠. According to the
type and structure of the task, various model settings can be defined for
this process (Deepak and Ameer, 2019; Pan and Yang, 2010). Based
on the transfer learning strategy, a multi-scale CNN architecture is

proposed to effectively classify PV panel anomalies in this paper.

4

As shown in Fig. 3, the proposed CNN model is designed by modify-
ing the AlexNet architecture and utilizes its representation capability.
AlexNet is an efficient CNN model in image recognition problems and
it was proposed by Alex Krizhevsky et al. in the 2012 ImageNet Scale
Visual Recognition Challenge (ILSVRC-2012) (Ballester and Araujo,
2016). The original AlexNet structure consists of twelve layers with five
convolutional layers, three max-pooling, three fully-connected, and one
classification layer. In the network, first two convolution layers utilize
11 × 11 and 5 × 5 while the next three convolutions use 3 × 3 kernel-
sized filters. Max-pooling layers have only 3 × 3 kernels. However, the
low-level convolution layers with 3 × 3 small-sized filters cannot obtain
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Fig. 2. The general structure of the proposed PV anomaly classification method.
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ensitive features from the output of neurons in the deep layers for
V anomalies. Therefore, the pre-trained AlexNet architecture is mod-
fied to extract more detailed feature maps and a novel and efficient
ulti-scale CNN model is proposed. Since low-level convolutions have

mall-sized filters, two new convolutional branches are added to series-
onnected of 3 × 3 convolutional layers. These branches include middle
nd high level filter banks with 5 × 5 and 7 × 7 kernels to extract multi-

scale spectral features from the inputs (Liu et al., 2021). Convolutions at
the input layer {Conv-1(11, 96) – Conv-2(5, 256)} extract general input
features and send the knowledge to the parallel branches. According
to the input size of the AlexNet, the PV image set are resized to
227 × 227 pixels. The designed CNN architecture consists of three
parallel branches with different sizes of convolutions as: {Conv3-1(3,
84) - Conv3-2(3, 384)} for fine-grained features with small-sized
ilters, {Conv3-3(5, 384) - Conv3-4(5, 384)} for middle-grained features
ith middle-sized filters, and {Conv3-5(7, 384) - Conv3-6(7, 384)} for

oarse-grained features with large-sized filters, respectively. After these
perations, three branches are concatenated into one feature map and
t is sent to the last 1 × 1 convolutional layer Conv-4(1, 512) to reduce
he output dimension and obtain multi-channel features.

For the convolutions, let m is the filter size of the 𝑗th layer n, b is
he bias matrix, and K defines the kernel. Then, the output of the 𝑗th
ayer 𝑦𝑛,𝑗 is expressed by;

𝑛,𝑗 = 𝑓𝑎

(𝑚𝑗,𝑛−1
∑

𝐼𝑘,𝑛−1 ×𝐾𝑛,𝑗 + 𝑏𝑛,𝑗

)

(1)

𝑘=1 d

5

here 𝑓𝑎 (⋅) is the activation function. In the network, convolutions are
ctivated with ReLU functions to decompose the noises and improve
he learning speed. The output of the ReLU function f is given by:

𝑎 (𝑡) =

{

0, 𝑡 < 0
𝑡, 𝑡 ≥ 0

(2)

At every depth change, one max-pooling layer is used to reduce the
imension of the features from the activation function with a statistic
f nearby outputs, and it can be given by the following equation;

𝑗 = 𝑚𝑎𝑥
(

𝐹𝑅) |
|

|

𝐹 = 𝑓𝑗 𝑖 ∈ 𝑅 (3)

Here, R is the pooling region. Finally, neurons of the first two fully-
connected layers are set to 1000 and the last fully-connected layer
gives the probability of the defined classes according to the anomalies.
These layers obtain a deep feature vector. As given in Eq. (1), a fully-
connected layer multiplies the input by a weight matrix 𝑤 and appends
o a bias vector:

𝑛,𝑗 =
𝑚𝑗,𝑛−1
∑

𝑘=1
𝑌𝑘,𝑛−1 ×𝑤𝑛,𝑗 + 𝑏𝑛,𝑗 (4)

n addition, the softmax and classification layers are discarded and new
ayers are connected to the last fully-connected layer. In the network,
riginal pooling layers, activation functions, and five convolutions
f the AlexNet are transferred and convolutional layers are updated

uring training. Table 2 summarizes the corresponding relationship
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Fig. 3. Details on the design multi-scale CNN architecture.
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Table 2
Relationship between the proposed network and AlexNet architecture. TL defines the
transferred layers.

AlexNet Multi-scale CNN Description Depth

Conv-1 Conv-1 TL 96
Conv-2 Conv-2 TL 256
Conv-3 Conv-3-1 Conv-3-2 Low-scale with TL 384
– Conv-3-3 Conv-3-4 Adding middle scale 384
– Conv-3-5 Conv-3-6 Adding high scale 384
– Conv-4 Adding new layer 512
fc-6 fc-1 TL and Re-Organize 1000
ReLU-6 ReLU-4 TL –
fc-7 fc-2 TL and Re-Organize 1000
ReLU-7 ReLU-5 TL –
fc-8 fc-3 TL and Re-Organize N-Class

between the designed network and AlexNet architecture. According to
the network structures, the proposed method provides few learnable
parameters compared to the AlexNet. While the original AlexNet has
approximately 57M learnable parameters, the multi-scale CNN model
has approximately 42M. Therefore, the proposed method not only
improves the AlexNet but also provides the least number of learnable
parameters.

As a result, the proposed CNN model with the parallel three
branches makes it possible to extract multi-scale features from the
input images with different scale knowledge. This architecture provides
that the efficiency and representation capability of the network are
increased through each filter in the branches concentrating on its own
computation.

2.4. Offline augmentation for network improvement

In the classification problems of conventional machine learning
and deep learning algorithms, the imbalanced class distribution of the
dataset has a significantly negative impact on the model performances.
The imbalanced ratio of the classes affects both the training conver-
gences and the generalization capability of the trained model. The most
commonly used solution is sampling the original images. Therefore,
the balance of the classes can be increased. The sampling method
 t

6

can be divided into two strategies as oversampling and undersampling
(Buda et al., 2018). In the oversampling, original images are augmented
with artificial examples and a more comprehensive set of possible data
points can be obtained. It also minimizes the distance between the class
distributions. The undersampling method randomly removes from the
majority classes and provides the same number of samples for all classes
(Liu et al., 2021; Shorten and Khoshgoftaar, 2019).

The Infrared Solar Modules dataset used in this study is a huge
dataset with 10,000 images representing different anomalies. However,
the No-Anomaly class has 10,000 samples and it has 5.33 times more
images than the second-largest Cell class. In addition, five classes have
images under 1000 samples. Therefore, the oversampling method is
performed with offline augmentation to overcome the imbalanced class
distribution and increase the generalization capability. The key point
in this stage is to keep the general point of view of the dataset. If an
unsuitable augmentation is applied, the generated new samples do not
represent the real world and do not contribute to the network perfor-
mance. For this purpose, brightness, reversing, and rotation operations
are selected to increase the number of samples. The brightness opera-
tion is used for decreasing and increasing the brightness of the images
with ±30 to every pixel. Afterward, reversing and rotation operations
re applied to original and resampled images. In the rotation, 180
egrees in a counterclockwise direction around the center point of the
mages are rotated. The reversing is applied two times with reversing
he elements in each column and row. Therefore, 11 different samples
rom an original image are derived. Since the number of No-Anomaly
lass is quite large compared to other classes, all operations are applied
o the anomaly classes while only rotation is used for the No-Anomaly
lass. As a result, each anomaly class size is increased 11 times and
o-Anomaly class is increased 2 times in the training and validation

ets. The number of images in the classes is offline augmented with the
re-processing of the dataset and an acceptable amount is obtained. An
xample aforementioned augmentation operation is given in Fig. 4 and
he percentage distribution of raw and augmented classes is presented
n Fig. 5 where the inner and outer loops represent the distributions
efore and after the augmentation. It should be noted that the under-
ampling method is also used for the 2-class classification process in
he experiments to provide a balanced class distribution.
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Fig. 4. Offline augmentation process of the images.
Fig. 5. Percentage distribution of images in the dataset for each class.

3. Experiments

In this section, experimental studies are carried out in order to
analyze the statistical validity of the proposed method. Experimen-
tal studies are implemented in MATLAB® R2020b environment and
performed on Intel (R) Core™ i7-10750H CPU @2.60 GHz, NVIDIA
Quadro P620 GPU 16 GB RAM memory, and an x64-based processor.
The remainder of this section presents the definitions of the benchmark
networks and evaluation metrics. Moreover, experimental and improve-
ment studies are performed in next section. Finally, the performance of
the proposed method is compared with the state-of-the-art methods.

3.1. Benchmark networks

In order to verify the performance of the proposed method, the
obtained results are compared with three different well-known deep
7

networks as; AlexNet (Ballester and Araujo, 2016), SqueezeNet (Iandola
et al., 2016), and ShuffleNet (Zhang et al., 2018). These networks
are pre-trained CNNs for the extraction of deep intrinsic features and
were trained on the ImageNet Large-Scale Visual Recognition Challenge
dataset with 1000 different classes. AlexNet is an impressive CNN
model that contains five convolution layers and three fully-connected
layers (Ballester and Araujo, 2016). Contrary to AlexNet, SqueezeNet is
an effective and smaller network with 50× fewer parameters AlexNet
(Iandola et al., 2016). ShuffleNet contains pointwise group convolu-
tions and shuffle operations to reduce computational complexity and
assist the information transfer across channels (Zhang et al., 2018).
In the experimental studies, the final layers of each network are re-
designed according to the dataset classes and then retrained to classify
new PV images. Therefore, they can be effectively utilized to perform
PV anomaly classification problem by retraining.

3.2. Evaluation metrics

In order to quantitatively assess the performance of the proposed
method, six evaluation metrics are used; Accuracy (Acc), Precision
(Pr), Sensitivity (Sn), Specificity (Sp), F1-score (F1), and Matthew
Correlation Coefficient (MCC). Acc gives the network performance for
all classes. While Pr defines the truly positive results divided by the
predicted positive results, Sn is the ratio of true positive results to
all relevant samples. Sp measures the proportion of actual negatives
that are predicted as negative. F1 gives the harmonic average with the
combination of Pr and Sn. MCC also computes the differences between
the actual and predicted classes. According to the obtained confusion
matrix, these evaluation metrics are defined as follows:

Acc =
𝑁TP +𝑁TN

𝑁TP +𝑁FP +𝑁TN +𝑁FN
(5)

Pr =
𝑁TP

𝑁TP +𝑁FP
(6)

Sn =
𝑁TP (7)
𝑁TP +𝑁FN
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Table 3
The classification results of all methods for 2-class.

Method Acc (%) Pr (%) Sn (%) Sp (%) F1 (%) MCC (%)

SqueezeNet 85.02 85.90 83.80 95.20 84.84 70.07
ShuffleNet 91.50 93.05 89.70 93.30 91.34 83.05
AlexNet 93.20 92.90 93.55 92.85 93.22 86.40
Proposed method 97.32 97.63 97.00 97.65 97.32 94.65

Sp =
𝑁TN

𝑁TN +𝑁FP
(8)

F1 =
2 ×𝑁TP

2 ×𝑁TP +𝑁FP +𝑁FN
(9)

MCC =

(

𝑁TP ×𝑁TN
)

−
(

𝑁FP ×𝑁FN
)

√

(

𝑁TP +𝑁FP
)

×
(

𝑁TP +𝑁FN
)

×
(

𝑁TN +𝑁FP
)

×
(

𝑁TN +𝑁FN
)

(10)

n the equations, 𝑁TP, 𝑁FP, 𝑁TN, and 𝑁FN are the number of correctly
lassified anomalies, number of incorrectly classified anomalies, num-
er of correctly classified opposite anomalies, and number of misclas-
ified anomalies, respectively. Therefore, the correctness, effectiveness,
nd robustness of the proposed method can be analyzed with the above
etrics.

.3. Analyzes and results

In the experiments, the proposed multi-scale CNN method and pre-
rained deep learning models are trained with the same dataset. While
0% of the dataset is used in training, the remaining dataset is equally
sed for testing and validation. In the training process, the input
mage size is 227 × 227, the mini-batch size is adjusted to 32 and
he maximum epoch is preferred as 50. The learning rate is selected
s 1e−3 and reduced by a drop factor of 0.5 after every 10 epochs.
he training process of the proposed method is completed in a total of
0,000 iterations for 2-class and 28,850 iterations for 11-class. Fig. 6
emonstrates the training processes for 2-class and 11-class.

Experimental studies are separately carried out for both classes.
or the 2-class experiments, the Anomaly and No-Anomaly labels are
efined. Therefore, the first experiment represents whether there is an
nomaly in the PV images. For the 11-class experiments, the Anomaly
abeled images are divided according to the anomaly types and 11
ifferent PV panel anomalies are analyzed. First, the experiments are
erformed for 2-class. After the data augmentation process, the dataset
s comprised of a total amount of 123,668 images, including 103,668
nomaly images and 20,000 No-Anomaly images. An equal number
f images are taken to balance both fault classes. The new dataset
btained for the 2-class consists of 20,000 Anomaly and 20,000 No-
nomaly.

First of all, the metric results obtained from the 2-class are presented
n Table 3. As can be clearly seen from Table 3, while the classification
ccuracy values of the pre-trained deep learning methods are 85.02%
or SqueezeNet, 91.50% for ShuffleNet, and 93.20% for AlexNet, the
ccuracy value of the proposed method is calculated as 97.2%. When
ll deep learning methods are analyzed in terms of their precision
alues, the proposed multi-scale CNN method gives the best value,
hich is 97.63%. On the other hand, those of SqueezeNet, ShuffleNet,
nd AlexNet are calculated as being 85.90%, 93.05%, and 92.90%,
espectively. From these values, it can be clearly seen that the proposed
ethod can make significant contributions to classification success.

When the proposed and pre-trained methods are compared in terms
f their sensitivity values, the proposed method provides the best result
hile SqueezeNet achieves the worst value, which is 83.80%. Among
re-trained methods, although AlexNet has a closer performance to the
roposed method, it is failed to provide the ability to outperform it.
s a result of investigating specificity values, it can be clearly shown

hat the proposed method has a high-level classification capability in
8

Table 4
The classification results of all methods for 11-class.

Method Acc (%) Pr (%) Sn (%) Sp (%) F1 (%) MCC (%)

SqueezeNet 75.15 75.87 75.15 97.52 74.50 72.65
ShuffleNet 82.94 82.95 82.94 98.29 82.74 81.16
AlexNet 85.02 85.36 85.02 98.50 84.60 83.46
Proposed method 93.51 93.52 93.51 99.35 93.49 92.86

2-class. For instance, whilst the specificity value of 97.65% is obtained
with the proposed model, those of SqueezeNet, ShuffleNet, and AlexNet
are calculated as being 95.20%, 93.30%, and 92.85%, respectively. The
F1 values obtained from the pre-trained deep learning methods are
obtained as being 84.84% for SqueezeNet, 91.34% for ShuffleNet, and
93.22% for AlexNet, respectively. The F1 value of the proposed method
is the best, which is 97.32%. The confusion matrix for the proposed
method is given in Fig. 7. When the confusion matrix is analyzed, 107
images were misclassified out of 4000, and an accuracy of 97.32% is
achieved for 2-class.

To research the success of the proposed method in classification of
faults from PV module images, the experiments are also performed for
11-class. The dataset obtained for the 11-class consists of 22,524 images
for Cell, 15,456 images for Cell-Multi, 11,280 images for Cracking,
17,988 images for Diode, 2100 images for Diode-Multi, 2988 images
for Hot-Spot, 2952 images for Hot-Spot-Multi, 9925 images for Offline-
Module, 12,672 images for Shadowing, 2448 images for Soiling, and
19,668 images for Vegetation. In order to balance the dataset, the
number of images in each fault class is equalized to the fault class with
the least number of images. In this way, the problems that will arise
from the unbalanced dataset are eliminated. The new dataset obtained
for the 11-class consists of a total of 23,100 images, being equal in
each fault class. Afterward, all deep learning methods are trained by
using the new dataset. The metric results obtained from experiments
are given in Table 4, where the highest metric values are marked
in boldface. In addition, Fig. 8 is given to better show the obtained
results. The classification performances of all methods are evaluated by
means of the accuracy, precision, sensitivity, specificity, F1, and MCC.
According to classification results in Table 4, the proposed method
outperforms the pre-trained deep learning methods as it is capable of
correctly classify 93.51% of the PV module faults.

As expected, the metric result values of the proposed method are
very high because of its effective structure and balanced data. For
instance, the accuracy, precision, sensitivity, specificity, F1, and MCC
values of the proposed method are calculated as being 93.51%, 93.52%,
93.51%, 99.35%, 93.49%, and 92.86%, respectively. Among all the
pre-trained deep learning methods, AlexNet provides the second best
classification accuracy of 85.02%, precision of 85.36%, sensitivity of
85.02%, specificity of 98.50%, F1 of 84.60%, and MCC of 83.46%,
respectively. Similar to 2-class classification results, SqueezeNet has
the worst metric values, which are 75.15% for accuracy, 75.87% for
precision, 75.15% for sensitivity, 97.52 for specificity, 74.50 for F1, and
72.65% for MCC, respectively. Moreover, the confusion matrix of the
proposed method is presented in Fig. 9. The proposed method correctly
predicts 2160 out of 2310 PV module images. For in-depth analysis
for class-11, the performance of the proposed method is separately
analyzed in terms of each fault. The obtained classification results are
listed in Table 5.

As can be seen in the confusion matrix and Table 5, the Cell, Cell-
Multi, and Vegetation classes give only less than 90% accuracy. While
the network predicts 176 images as Cell, 18 images are only predicted
as Cell-Multi. However, these classes represent the same anomalies. Cell
class represents hot spot occurring with a square geometry in a single
cell and Multi-Cell class represents the hot spot occurring with a square
geometry in multiple cells. Therefore, a relatively low accuracy value
is obtained. For the Vegetation, the accuracy is 86.19% and the highest
negative prediction is against the Cell. The reason for the relatively
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Fig. 6. Training progress of the multi-scale CNN for 2 and 11 class experiments.
Fig. 7. The confusion matrix of the proposed method for 2-class.

low accuracy is due to the cell anomaly similarity of the vegetation.
In addition, the proposed method provides the highest classification
accuracy of 99.52% in Diode-Multi and Hot-Spot classes. While the
lowest value in precision is in Cell class with 81.10%, the highest
value is obtained in Diode-Multi class with 99.52%. The best results
in sensitivity, specificity, F1, and MCC are in Diode-Multi class.

The activations in the different convolutions of the proposed method
is given in Fig. 10. While Conv-1 and Conv-2 represent the first two
convolutions, Convolutions 3–i present the parallel branches. By com-
paring the original input image with the areas of activation, it can be
easily obtained which features the proposed method learns. In Fig. 10,
first 64 channels are presented. The white pixels show strong positive
activations and the black pixels indicate strong negative activations.
In addition, white pixels in a channel describe the strongly activated
channel at that position.
9

Table 5
The classification results of proposed method for each fault in 11-class.

Fault Acc (%) Pr (%) Sn (%) Sp (%) F1 (%) MCC (%)

Cell 83.80 81.10 83.80 98.04 82.43 80.66
Cell-Multi 81.90 84.31 81.90 98.47 83.09 81.43
Cracking 94.76 96.13 94.76 99.61 95.44 94.99
Diode 96.66 98.06 96.66 99.80 97.36 97.10
Diode-Multi 99.52 99.52 99.52 99.95 99.52 99.47
Hot-Spot 99.52 97.20 99.52 99.71 98.35 98.19
Hot-Spot-Multi 99.04 95.41 99.04 99.52 97.19 96.93
Offline-Module 96.66 94.85 96.66 99.47 95.75 95.33
Shadowing 96.19 93.08 96.19 99.28 94.61 94.08
Soiling 94.28 98.50 94.28 99.85 96.35 96.02
Vegetation 86.19 90.50 86.19 99.09 88.29 87.18

Overall 93.51 93.52 93.51 99.35 93.49 92.86

Figs. 11 and 12 show the t-distributed stochastic neighbor em-
bedding (t-SNE) distributions of extracted features from the proposed
method for 2-class and 11-class. Through the t-SNE, the distribution
of the classes in each layer can be observed clearly. As can be seen
from the Figures, the maps obtained from t-SNE contain some different
points that are clustered with the wrong class in the first layers. In the
maps in the last layers, each class is clustered in separate regions and
very few wrong points are distributed in different clusters. When the
clusters in the fc-3 layer of the proposed method are analyzed, it is
seen that the distribution of the classes is quite better.

3.4. Analysis of improvement percentages

To highlight the classification performance of the proposed method,
the improvement percentages are calculated over the pre-trained deep
learning methods, namely, SqueezeNet, ShuffleNet, and AlexNet. The
obtained improvement percentages are presented in Tables 6 and 7 for
2-class and 11-class. In addition, bar graphs are given in Fig. 13 for
each metric to better observe the improvement percentages.

As can be seen from Tables 6 and 7, the proposed method sig-

nificantly improves the classification performance of the pre-trained
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Fig. 8. The comparison of classification results of all methods for 11-class.
Fig. 9. The confusion matrix of the proposed method for 11-class.

eep learning methods. For instance, when analyzed to the improve-
ent percentages in accuracy values for 2-class and 11-class, the pro-
osed method improved the performance of SqueezeNet by 14.47%
o 24.43%, ShuffleNet by 6.36% to 12.74%, and AlexNet by 4.42%
o 9.99%, respectively. The highest precision improvements in both
lasses are achieved in SqueezeNet. For example, the precision values of
queezeNet, ShuffleNet, and AlexNet are improved on by the proposed
ethod by 13.66%, 4.92%, 5.09% for 2-class, and 23.26%, 12.74%,
.56% for 11-class, respectively.

When compared the proposed method with SqueezeNet, ShuffleNet,
nd AlexNet, the improvement percentages in sensitivity values are
alculated as being 15.75%, 8.14%, 3.69% for 2-class, and 24.43%,
2.74%, 9.99% for 11-class, respectively. Moreover, the proposed
10
Table 6
The improvement percentage results of each fault in 2-class.

Method Acc (%) Pr (%) Sn (%) Sp (%) F1 (%) MCC (%)

SquezeeNet 14.47 13.66 15.75 2.57 14.71 35.08
ShuffleNet 6.36 4.92 8.14 4.66 6.55 13.97
AlexNet 4.42 5.09 3.69 5.17 4.40 9.55

Table 7
The improvement percentage results of each fault in 11-class.

Method Acc (%) Pr (%) Sn (%) Sp (%) F1 (%) MCC (%)

SqueezeNet 24.43 23.26 24.43 1.88 25.49 27.82
ShuffleNet 12.74 12.74 12.74 1.08 12.99 14.42
AlexNet 9.99 9.56 9.99 0.86 10.51 11.26

method led to 2.57%, 4.66%, 5.17%, and 1.88%, 1.08%, 0.86% im-
provements in specificity values for 2 and 11-class in comparison
with SqueezeNet, ShuffleNet, and AlexNet, respectively. The proposed
method gives rise to 4.40% for 2-class and 10.51% for 11-class improve-
ments in F1 values in comparison with AlexNet, whilst improvements in
F1 values for SqueezeNet and ShuffleNet were reported as 14.71% and
6.55% for 2-class, and 25.49% and 12.99% for 11-class, respectively.
The improvement percentages in MCC values of the proposed method
over SqueezeNet, ShuffleNet and AlexNet are calculated as 35.08%,
13.97%, 9.55% for 2-class, and 27.82%, 14.42%, 11.26% for 11-class,
respectively. These results clearly indicate that the proposed multi-scale
CNN model has not only the effectiveness and suitability classification
results than pre-trained deep learning methods but also guarantees
more reliable operation of PV systems.

3.5. Comparison between the proposed method and state-of-the-art methods

Trouble-free operation of PV systems is of great importance. If the
module faults in PV systems are not detected in a timely manner, the
generation of the system may be low. The early diagnosis of module
faults in these systems can be associated with fast and accurate results
of the image processing approaches. The CNN structures provide more
reliable and better results than other methods in diagnosing these
faults. Furthermore, the CNN methods can guarantee a powerful clas-
sification ability. Consequently, CNNs are widely used in the diagnosis

of PV module faults because of their superior properties. In this paper,
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Fig. 10. The activations obtained from different convolutions. (a) 2-class, (b) 11-class.
Fig. 11. The t-SNE view of extracted features from the convolution layers of the proposed method for 2-class.
Table 8
Comparison of the classification results of the related studies using the same dataset for 2-class (%).

Study Year Method Acc Pr Sn Sp F1 MCC

Fonseca Alves et al. 2021 CNN 92.50 92.00 92.00 – 92.00 –
Le et al. 2021 Ensemble model 94.40 – – – – –
Proposed method 2021 CNN 97.32 97.63 97.00 97.65 97.32 94.65
we proposed an efficient fault diagnosis method for PV module faults.
Comparisons are realized with studies using the same dataset to fairly
assess the classification ability of the proposed method. Tables 8 and
9 show the classification results of the related studies for 2-class and
multi-class.

According to Tables 8 and 9, Fonseca Alves et al. (2021) proposed
a CNN structure to classify faults in PV modules. The authors obtained
a balanced dataset using undersampling and oversampling methods.
They considered four scenarios to test the classification performance
of the proposed method. The overall accuracy, precision, sensitivity,
and F1 values obtained from this study for 2-class can be given as
92.50%, 92.00%, 92.00%, and 92.00%, respectively. Moreover, the
authors stated that the proposed method provided 66.43% accuracy for
the 11-class. Le et al. (2021) presented a deep neural network structure
that uses residual network structure and ensemble technique to classify
11
faults in PV modules. After the network designing, the authors tried
different transformations to augment the dataset, thus aiming to obtain
the best classification results. Moreover, they obtained the number of
the optimal filters by testing the raw and the augmented dataset on the
proposed method with different filter numbers. Their proposed method
has 94.40% of accuracy for 2-class and 85.90% of accuracy for 12-class,
respectively.

When the metric results given in Tables 8 and 9 are analyzed, the
proposed method outperforms better than other studies using the same
dataset in diagnosing faults in the PV modules. When the classification
results obtained from three studies are compared in terms of accuracy
values, multi-scale CNN has the highest accuracy values, which are
97.32% for 2-class and 93.51% for 11-class. In addition, the proposed
method is improved the accuracy values obtained from other methods
by 5.21% and 3.09% for 2-class, respectively. The accuracy values in
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Fig. 12. The t-SNE view of extracted features from the convolution layers of proposed method for 11-class.
Fig. 13. The bar graphs of improvement percentages for 2 and 11-classes.
Table 9
Comparison of the classification results of the related studies using the same dataset
for multi-class.

Study Year Method Class number Acc (%)

Fonseca Alves et al. 2021 CNN 11 66.43
Le et al. 2021 Ensemble model 12 85.90
Proposed method 2021 CNN 11 93.51

studies for multi-class are improved as 40.76% and 8.86%, respectively.
As can be easily seen from these results, the proposed multi-scale
12
CNN provides a quite satisfactory classification performance despite the
increase in the number of classes.

4. Conclusion

In this study, a powerful deep learning method is proposed to
classify faults in PV modules. First, the IR images collected from
different solar power plants are separated according to different fault
classes such as Cell, Cell-Multi, Cracking, Diode, Diode-Multi, Hot-
Spot, Hot-Spot-Multi, Offline-Module, Shadowing, Soiling, Vegetation,
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and No-Anomaly. Due to the low number of some fault images, data
augmentation is made to increase the classification success of the
proposed method. After all processes, the obtained PV module fault
images are divided into 2 and 11-classes. The whole fault images in
both classes are adjusted to be equal in number, thus obtaining a
balanced dataset. The classification performance and capability of the
proposed method are compared to pre-trained deep learning methods
such as SqueezeNet, ShuffleNet, and AlexNet. When the metric results
of the methods are analyzed, the accuracy values of the proposed CNN
method are calculated as 97.32% for 2-class and 93.51% for 11-class.
AlexNet is provided the second best accuracy values, which are 93.20%
for 2-class and 85.02% for 11-class. In addition, the proposed method
is significantly improved the classification results obtained from pre-
trained deep learning methods. For instance, the average improvement
percentages in accuracy values for 2-class and 11-class are ranged from
4.42% to 14.47% and 9.99% to 24.43%, respectively. When all the
obtained results are evaluated, it is thought that the proposed method
can not only correctly detect and classify the faults in PV modules, but
also can play an important role in the more efficient operation of PV
systems.

In future works, the proposed CNN method could be improved with
an effective optimization algorithm to obtain a more robust anomaly
classification performance. In addition, the proposed method could be
utilized for fault detection of different RES types.
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