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b Department of Electrical Electronics Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Turkey 
c Department of Physics, Faculty of Science & Arts, Inonu University, 44280 Malatya, Turkey   

A R T I C L E  I N F O   

Keywords: 
Titanium dioxide 
Nanotubes 
Hydrogen sensor 
Anodization 
Support vector machine 
Artificial neural network 

A B S T R A C T   

The conductometric hydrogen gas sensors were used to explore TiO2 nanotubes in this study. TiO2 nanotubes are 
synthesized by anodization of the titanium foils using a neutral 0.5% and 1% (wt) NH4F in glycerol solution 
depending on anodization time and anodization voltage at the temperature of 20 ◦C. The amorphous, rutile and 
anatase phases of TiO2 are observed for as-prepared TiO2 nanotubes, annealed at 700 and 300 ◦C, respectively. 
The diameters of the nanotubes grow as the anodization time and voltage increase, according to scanning 
electron microscopy (SEM) images. The inner diameter of nanotubes is changed between ~70 nm to ~225 nm. 
Hydrogen sensing properties of Ti/TiO2 nanotubes/Pd device has been tested at room temperature under con-
certation range from 0.5% to 10% depending on the crystalline phase. The highest sensor response is observed 
for anatase crystalline TiO2 nanotubes. Typical Schottky-type behavior is observed from the I-V measurement. All 
the fabricated nanotube diameters are also simulated by using Support Vector Machine and Artificial Neural 
Network models. And also, some of the nanotube diameters which are not obtained experimentally (anodization 
voltage of 70 V) are estimated using the Support Vector Machine and Artificial Neural Network models. In 
addition, an analytical model is also proposed using Jacobi numeric analysis method alternative to the simu-
lation model for the nanotube diameter. Finally, the analytical, simulation, and experimental results are 
compared, and the best result is obtained using the 1 Hidden Layer Artificial Neural Network model.   

1. Introduction 

As an environmentally friendly, useful, cost-effective clean fuel, 
hydrogen attracts attention among sustainable energy sources [1]. 
Therefore, it has many industrial uses such as engines of rocket, fuel cell 
technology and applications of automotive [2]. When hydrogen is 
coupled with oxygen, however, it becomes exceedingly volatile, flam-
mable, and explosive. It has a dangerous structure that can easily ignite 
when the hydrogen concentration is >4% in the air [3]. For this reason, 
highly sensitive, fast and selective H2 detection sensors are required to 
monitor the H2 concentration. Catalytic, electrochemical, thermal con-
ductivity, work-function-based, resistance-based, mechanical, acoustic 
and optical techniques are all used in hydrogen detection technologies 
[4]. 

Due to their remarkable features, such as chemical stability [5], 
biocompatibility [6], high photocatalytic activity [7], and efficacy in 
terms of dye-sensitized solar cells, cost semiconductors, catalysis, water 

treatment, and gas sensors are just a few of the applications for TiO2 
materials [8]. Rutile [9], anatase [10], and brookite [11] are three 
natural polymorphs of TiO2, each with its own set of characteristics. 
Sol–gel, hydrothermal, chemical vapor deposition, and solvothermal 
preparation techniques can be used to produce TiO2 into a variety of 
nanostructures, including nanorods, nanoparticles, nanotubes, nano-
wires, and mesoporous/nanoporous materials [12,13]. Depending on 
the application, each approach offers advantages and disadvantages. 
Nanotubes are fascinating because of their high surface-to-volume ratio 
and size-dependent properties. Nanotubes are suitable for gas sensors 
since they have a huge surface area and are one-dimensional [14]. After 
the regular synthesis of TiO2 nanotubes arrays by Grimes et al. [15], 
researches were made for their effects on many applications such as 
solar cells [16,17], photocatalysis [18], chemical sensing [19], drug 
delivery applications [20] and gas sensor [21]. The ability to adjust 
parameters such as tube length and diameter [22] has enabled gas 
detection to work at both low temperatures and ppm levels [23]. For 
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safety and industrial health, automotive applications, environmental 
monitoring, and manufacturing process management, gas sensors are 
becoming increasingly vital. 

Zwilling et al. originally described electrochemical anodization of 
TiO2 nanotubes to get a highly ordered structure using a chromic acid-
–hydrofluoric acid (HF) combination solution. [24] and Gong et al. used 
HF electrolytes to produce TiO2 nanotubes [15] Beranek et al. also used 
an H2SO4–HF combination solution as well [25]. In addition to these 

solutions, TiO2 nanotubes continued to be produced by researchers 
using many different solutions. The production of TiO2 nanotubes using 
a glycerol-based electrode and its effect in various applications have 
attracted attention. Macak et al. were the first to report that a glycerol 
solution could be used to produce self-organizing TiO2 nanotubes having 
a large aspect ratio. Especially since the effect of TiO2 nanotube arrays 
on H2 gas is remarkable, the glycerol-based electrolyte was preferred. 
The architecture of the TiO2 nanotube arrays generated by anodizing the 
Ti foil in a glycerol-based electrolyte containing fluorine ions resulted in 
considerable resistance variation. [26]. 

In the last few years, the effects of TiO2 nanotubes synthesized using 
various methods on the selectivity, response time, sensitivity, etc. 

Fig. 1. Schematic diagram of the as-growth gas sensor with SVM and ANN models.  

Fig. 2. SVM schematic representation.  

Fig. 3. The proposed ANN model with input, output and hidden layer.  

Table 1 
System parameters of the proposed ANN and SVM models.  

Network type Feed forward back propagation algorithm 

Transfer function Tansig 
Initialization of the weights Sigmoid 
Training function Trainlm 
Adaptation learning function Learngdm 
Performance function MSE 
Number of layers 1 and 2 
Optimization procedure Levenberg-Marquardt  
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parameters of H2 gas have been investigated. In researches on H2 sensor 
applications of TiO2 nanotubes arrays are used for different anodization 
methods such as 0.5% HF [27], 1 wt% HF [28], NH4F in ethylene glycol 
(EG) [29], (NH4)2SO4 and 0.5 wt% NH4F [30], glycerol solution con-
taining NH4F [31], glycerol containing (NH4)2SO4 and NH4F [32]. There 
are also variable pH values for the electrolytes sodium hydrogen sulfate 
(NaHSO4) monohydrate, potassium fluoride (KF) and sodium citrate 
tribasic dehydrate. [26]. By combining a template aided technique with 
atomic layer deposition, anodic aluminum oxide (AAO) was employed 
to create TiO2 nanotubes (ALD) [33]. Besides, H2 gas sensitivity was also 
investigated using TiO2 nanotubes produced by the the hydrothermal 
synthesis method [34]. Pt, Pd, Au, Ag and Cu electrodes, Au, Ag and Pt 
wire bonders [35] and Pd nanorings [36] were used to take current- 
voltage (I-V) measurements. In these studies, the researchers investi-
gated the sensing properties against H2 flow at concentrations ranging 
from 0.5% to 10%. 

There are also some simulation based TiO2 nanotubes studies in the 
literature [37]. The distribution, diameter and length of the TiO2 
nanotubes prepared by anodization (acidic HF mixtures, water free, 
buffered neutral or HF electrolytes) is predicted by using the artificial 
neural network (ANN) model with back propagation method [38]. The 
choice of training data, in addition to the construction and limits of the 
networks, are examined in this model. The R value of training and 
testing data was 0.9806 and 0.9997, separately, and the percentage of 
significant nanotube spreading estimate values was 93.48%. The testing 
data had a relation difference of 4.5%, and the predictive value of the 
generated network was claimed to be perfect enough to be employed in 
further nanotube length modeling studies [38]. There are many learning 
algorithm methods, such as active learning in literature developed using 
machine learning (ML) [37]. Bipolar electrochemistry is utilized to assist 
the optimization process of generating TiO2 nanotubes micro-patterns 
(TNMs) with an extensive length range inside one model utilizing the 

active learning method. To assess or classify the training data pattern, 
prediction models are created using ML (Machine Learning) approaches. 
The gradient boosted regression tree (GBRT) model is employed in this 
suggested study to predict and optimize TNMs. As a result, the least 
experiment can enlarge the diameter range of TNMs. Bayes, K-Nearest 
Neighbor (KNN), Support Vector Machine (SVM), Gradient Boosting 
Decision Tree and Decision tree (DT) are among the classification 
techniques tested to distinguish cut-off points from the standard dataset 
(GBDT). Both the DT and GBDT approaches are found to be more ac-
curate than other methods, with the GBRT model's R2 value being 0.78 
[39]. 

In the publications reported here, TiO2 nanotubes were produced by 
various anodization methods. These studies generally examined some of 
the anodization parameters in the production of TiO2 nanotubes. In our 
study, contrary to the literature, the effects of anodization parameters 
such as anodization temperature, voltage, time and electrolyte concen-
tration were examined together comparatively. All parameters were 
evaluated more comprehensively and compared with analytical and 
simulation models. In this study, anodic oxidation method was used by 
preparing various glycerol solutions to produce TiO2 nanotubes. Thus, 
the effects of anodization parameters such as anodization temperature, 
time, voltage, and NH4F ratio on TiO2 nanotube diameters were inves-
tigated. After anodizing, TiO2 nanotubes were annealed at 300 ◦C and 
700 ◦C to see the effect of crystal structures on H2 gas sensing mea-
surement. Thus, the effects of rutile, amorphous, and anatase crystal 
structures were investigated. Palladium (Pd) electrodes are coated in 
order to make TiO2 nanotube gas sensor measurements produced with 
glycerol solutions at different ratios. TiO2 nanotubes were tested and 
analyzed as a hydrogen sensor using the conductometric-based sensing 
method. Finally, after the diameters of all produced nanotubes are ob-
tained, a simulation based ANN and SVM models and analytical based 
Jacobi method are used to obtain same results which are obtained 
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experimentally. Thus, it will be possible to simulate and predict some 
unknown values of TiO2 nanotube diameters using proposed simulation 
and analytical based models. As a result, all experimental, analytical and 
simulation results were compared. 

2. Experimental and simulation procedure 

2.1. Synthesis of TiO2 nanotubes 

High quality titanium foils (99.7%, Sigma-Aldrich) have a thickness 
of 0.25 and an area of 10 × 20 mm2 used to growth TiO2 nanotubes. 
Titanium foils were cleaned with ultrasonic treatments in deionized (DI) 
water, isopropyl alcohol, and acetone for 15 min prior to electro-
chemical anodization. The solutions of electrolyte are made from 99.5% 
wt glycerol and 0.5 and 1% wt NH4F, respectively, at 20 ◦C. At room 
temperature, the electrolyte is mixed with a magnetic stirrer, and then 
the temperature of the electrolyte is set to 20 ◦C using a thermostat bath. 
A two-electrode system (2-cm separation) is employed in the anodiza-
tion process, using a DC power source and platinum foil (99.9%, Sigma- 
Aldrich) as the cathode. At the anodization process, voltage is changed 
from 20 V to 60 V with an anodization time of 60 min to 240 min. After 
anodization, the samples are rinsed with DI water and dried with a high 
purity nitrogen gas. X-ray diffraction (XRD, Rigaku RAD-B) with Cu K 
radiation is used to characterize the produced TiO2 nanotubes. Scanning 
electron microscopy is utilized to examine the nanotubes' morphologies 
and microstructure (SEM, Leo-EVO 40). 

2.2. Sensor test 

In order to perform gas sensing measurement, the nanotubes are 
annealed at 300 and 700 ◦C with a heating rate of 2 ◦C/min under dry air 
flow by using a tube furnace (Protherm) for 3 h. Palladium (Pd) elec-
trodes are coated on the annealed and unannealed TiO2 nanotubes by 
using a sputtering system (Nanovak 400) by using a shadow mask. The 
rate of deposition is remained fixed as 1 Å/s under 5 mTorr argon (Ar) 
pressure during the process of deposition, and the thicknesses of Pd 
electrodes are recorded as 120 nm by using a QCM from Inficon. In order 
to compute two point electrical measurements, TiO2 nanotubes with Pd 
electrodes on top are contacted as a upper electrode and Ti was con-
tacted as a bottom electrode for H2 gas sensing measurements for 
obtaining Pd/ TiO2 nanotubes/Ti structure. All measurements are done 
at room temperature. The fabricated nanotubes sensors are exposed to 
10% H2 after cleaning dry air to the measurement cell for the I-V 
characterization. The measurement system includes the mass flow 
control unit, a source measure unit, gas cylinders and a measurement 
cell with a1l volume. To change the concentration of H2, dry air-H2 
mixtures are used. The total flow rate of the gas mixtures is adjusted to 
200 sccm using two digital mass flow controllers [40]. The concentra-
tion of H2 is changed from 0.5 to 10%. The Labview program was used to 
record all measurement data, which was connected to a personal com-
puter via a GPIB data acquisition system. Fig. 1 illustrates a schematic 
design of the as-growth gas sensor. 

2.3. ANN and SVM models 

The ANN and SVM models are used for the analysis and estimation of 
the TiO2 nanotubes diameter using the experimental data of time, 
voltage and electrolyte composition in this present study. The projected 
models are used with three stages. Firstly, data set were generated by 
classification the items automatically with time, voltage and electrolyte 
composition class labels according to the nanotube diameters that ob-
tained experimentally. Secondly, the data was pre-processed and 
normalized. Lastly, SVM and ANN models that are developed in Matlab 
2020b were trained using the nanotube diameter features. The sug-
gested ML-based models' operation was measured utilizing the deter-
mination coefficient (R2) and Root Mean Squared Error (RMSE) 
approaches. RMSE and R2 metrics can be evaluated as follows. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i
(Expi − Simi)

2

N

√
√
√
√

, (1)  

R2 = 1 −

∑

i
(Expi − Simi)

2

∑

i
(Simi)

2 , (2)  

where Sim, Exp, and N are the values of simulated and experimental 
findings, and the number of examples in the suggested model. 

2.3.1. Support Vector Machine (SVM) 
SVM stands for supervised learning model with related learning al-

gorithms for classification and regression analyses in machine learning. 
SVM is a strong machine learning technique that may be broken down 
into linear and non-linear lines utilizing Vapnik's statistical learning 
model [41]. This model is a classification approach based on supervised 
learning tiny data and may be utilized for classification and regression 
analyses [42]. SVM starts by transferring the input data to a higher- 
dimensional space where two groups may be divided by a hyperplane 
that enlarges the margin between them [43]. The more space between 
the two classes in SVM, the more accurate the classification. Fig. 2 shows 
the SVM that divides the two classes on the ideal hyper plane. There are 
many models of SVM in literature such as linear, quadratic, cubic and 
medium gaussian. In this study, linear and quadratic SVM models are 

Fig. 5. XRD pattern of (a) as-anodized TiO2 nanotubes, (b) TiO2 nanotubes 
annealed at 300 ◦C for 3 h and (c) TiO2 nanotubes annealed at 700 ◦C for 3 h. 
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used because of low RMSE values between output and target data. SVM 
model is trained using Radial Basis Function and Polynomial kernels. 

SVM utilize a restricted quadratic optimization difficulty grounded 
on essential risk minimalize to generate the best hyperplane f (x) =
0 through data sets [44]. 

Input vectors are {xi, i = 1,…,n} and yi{− 1,1} fits to one of two 
periods, the hyperplane may be shown as: 

w0.x+ b0 = 0 (3)  

where w, x and b shows weight, input and bias vectors, respectively. The 
data may be separated linearly in the following formulas with known w 
and b: 

w.xi + b ≥ 1 if yi = 1 (4)  

w.xi + b ≤ 1 if yi = − 1 (5) 

It is known that the kernel method is utilized to resolve a nonlinear 
case by a linear classifier. The function converts the input data into a 
upper-dimensional characteristic space Φ. K kernel function: 

k(x, x′

) = (Φ(x) ,Φ(x
′

) ) (6)    

- Polynomial 

k
(
xi, xj

)
=

(
xi.xj + 1

)d (7)    

- Radial Basis Function 

(x, y) = e− γ‖(x− xi‖
2

(8)  

2.3.2. Artificial Neural Network (ANN) 
The artificial neural network (ANN) is a data processing technique 

stimulated by the human brain. Currently, researchers have been used 
ANN to simulate and estimate their experimental results in various fields 

of science and engineering, containing chemistry and physics moslty 
[45–49]. ANN is a mathematically based model having input, output, 
and a layer of neurons. As illustrated in Fig. 3 [50,51], these neurons are 
connected in a network formation with some numerical values called 
weights in order to identify interactions between output and input data 
and finally find the closest simulation and prediction outcomes of the 
output data. Each weight have a particular rate which is accepted across 
the network and reproduced by the samples [50,51]. 

The system model of ANN has three inputs with 30 samples (3*30), 
one and two hidden layers each with ten neurons, and one output with 
30 samples (1*30) based on experimental data. As shown in Fig. 3, the 
system model's inputs are voltage, time, and electrolyte composition, 
while the output is nanotube diameter. The data was divided into two 
groups to get how the data size allotted for testing and training exag-
gerated the estimate. 70% of the data were utilized for training and 30% 
utilized for testing in the suggested ANN model. System parameters of 
the proposed ANN and SVM models are given in Table 1. 

In this study, an ANN model with 1 and 2 hidden layers (HL) is 
utilized to demonstrate how the amount of HL influences the R2 and 
RMSE outcomes. Fig. 4 depicts the entities and flow diagram for the 
production, simulation, and prediction of TiO2 nanotubes using ANN 
and SVM models. 

2.4. Analytical model 

An analytical model alternative to the simulation model is also 
proposed for the nanotube diameter using some of numeric analysis 
methods. If a system of equations consisting of a certain number of 
unknowns and a certain number of equations consists of linear or 
nonlinear terms, this system is called a system of linear or nonlinear 
equations. The proposed system of equations is a linear system con-
taining three unknowns which are voltage, anodization time and NH4F 
concentration. If we consider values of these unknowns and tube 
diameter as a matrix form such as A. x→ = b. Where A is parameter of 

Fig. 6. Top view SEM images of TiO2 nanotubes at the same magnification (×100,000) synthesized by applying anodization voltage from 20 V to 60 V at electrolyte 
composition of (a) 0.5% wt NH4F, (b) 1% wt NH4F. 
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unknowns and b is nanotube diameter. After applying one of iterative 
linear algebra methods which is Jacobi, a mathematical equation which 
depends on voltage (x1), anodization time (x2) and NH4F concentration 
(x3) can be derived as given below. 

Nanotube Diameter = 2.9901x1 + 0.1457x2 − 3.0645x3 (9)  

3. Results and discussion 

XRD measurements were used to inspect the outcome of annealing 
temperature on TiO2 nanotubes crystalline structure formation. Fig. 5 
illustrates the XRD designs of TiO2 nanotubes annealed and as-prepared 
at 300 and 700 ◦C. Before annealing, TiO2 nanotubes arrays are always 
amorphous and unsuitable for any application, including electron 
transport [52–54]. Even though the rutile phase is more chemically 
consistent than the anatase phase, it is less efficient in sensor imple-
mentation [55,56]. Because of its greater refraction index and enhanced 
particle mobility in the anatase lattice, it possesses better photocatalytic 
characteristics than rutile [57,58]. As-prepared TiO2 nanotubes arrays 
are generally converted to anatase phase by high heat treatment. As a 
result, as- prepared TiO2 nanotubes arrays were heated at 300 and 
700 ◦C for 3 h in a dry air environment for crystallization. In the X-ray 
diffraction patterns of amorphous materials (green lines), the four 
strongest recognizable peaks that can be attributed to titanium planes 
are shown: (100), (002), (101), and (102). (102). (102) [59]. At all 
annealed temperatures (300–700 ◦C), Pure titanium is still present in the 
samples; however, the peaks intersect with the whole of the anatase 
phase. The magnitude of titanium peaks was diminished when the full 

TiO2 was converted to rutile. Following a heat treatment at 300 ◦C, the 
phase of anatase is visible, with a modest intensity peak at 2θ is about 
25 ◦C. Because anatase is a metastable phase, it changes irreversibly into 
rutile at temperatures exceeding 700 ◦C. When the temperature rises, 
the anatase diffraction peaks eventually fade away and disappear, 
allowing the rutile phase diffraction patterns to take over [60]. Because 
transformation to the rutile phase occurs at a greater temperature, this 
indicates that the anatase phase is the favored growth orientation for 
TiO2 nanotubes. 

The parameters of the anodization like as anodizing voltage, tem-
perature, time, and electrolyte composition influence the morphology 
and structure of nanotubes [60]. Many studies have found that the 
diameter of nanotubes is highly sensitive to changes in anodization 
voltage [53,58]. SEM pictures of TiO2 nanotubes anodized at 20 V, 40 V, 
and 60 V are shown in Fig. 6. It shows the SEM pictures of arranged TiO2 
nanotubes samples on Ti acquired by anodization in glycerol based 
electrolytes with 0.5% and 1% wt NH4F by applying anodization po-
tential of 20 V, 40 V and 60 V at 20 ◦C for 60 min. The cross-section SEM 
image of the TiO2 nanotube anodized at 40 V for 240 min is given 
(Fig. 6). The diameter of TiO2 nanotubes rises as the anodization voltage 
increases. The diameter of TiO2 nanotubes rises as the anodization 
voltage increases. The diameter of TiO2 nanotubes increased approxi-
mately linearly when the anodization voltage was increased. SEM im-
ages were used to measure the nanotube diameters. Since nanotube 
growth was performed throughout a significantly more comprehensive 
(F− ) concentration range, it's vital to relate the electrochemical data 
acquired during anodization in different electrolytes. Fluorides in the 
electrolyte have a clear effect on the magnitude of the current, which 

Table 2 
Experimental, analytical and simulation results of nanotube diameter under different anodization voltage, time and electrolyte composition.  

Volt (V) Time 
(min) 

wt Experimental Results of Nanotube Diameters 
(nm) 

Analytical Results of Nanotube Diameters 
(nm) 

Simulation Results of Nanotube Diameters 
(nm) 

Linear 
SVM 

Quadratic 
SVM 

2HL 
ANN 

1HL 
ANN 

20 60 0.5 69.69 67.01175 57.35 67.29 70.39 74.52 
20 120 0.5 71.79 75.75375 67.23 83.12 72.18 77.18 
20 240 0.5 83.33 93.23775 86.88 88.95 144.05 87.12 
30 60 0.5 77.55 96.91275 91.38 90.59 76.74 83.60 
30 120 0.5 106.25 105.6548 98.66 108.20 86.64 90.58 
30 240 0.5 108.69 123.1388 121.30 110.97 150.22 113.09 
40 60 0.5 111.11 126.8138 119.17 116.46 105.91 105.68 
40 120 0.5 155.55 135.5558 129.81 129.16 135.42 119.81 
40 240 0.5 160 153.0398 146.86 136.88 154.24 154.06 
50 60 0.5 150 156.7148 150.80 138.26 136.18 144.32 
50 120 0.5 166.66 165.4568 158.90 160.45 193.48 161.90 
50 240 0.5 171.42 182.9408 180.47 179.26 165.38 191.58 
60 60 0.5 176 186.6158 182.32 177.37 171.33 184.53 
60 120 0.5 188.23 195.3578 190.22 200.66 212.96 196.67 
60 240 0.5 211.76 212.8418 207.70 211.99 207.54 212.26 
70 60 0.5   212.15 235.64 215.04 208.99 
70 120 0.5   220.65 254.73 220.85 210.52 
70 240 0.5   237.66 276.60 225.57 220.60 
20 60 1 72.22 65.4795 56.82 48.54 72.14 75.18 
20 120 1 75 74.2215 71.75 77.22 75.37 78.20 
20 240 1 94.11 91.7055 90.79 72.93 99.97 89.31 
30 60 1 80 95.3805 91.30 89.96 94.25 85.39 
30 120 1 95.23 104.1225 99.98 103.36 92.91 93.13 
30 240 1 105.96 121.6065 121.24 116.83 103.81 117.41 
40 60 1 120 125.2815 121.42 110.95 118.26 109.53 
40 120 1 131.64 134.0235 133.40 131.11 138.08 124.48 
40 240 1 142.85 151.5075 152.67 146.59 131.44 159.20 
50 60 1 133.33 155.1825 156.28 155.63 138.04 149.54 
50 120 1 200 163.9245 164.72 166.61 180.35 166.86 
50 240 1 211.76 181.4085 181.65 184.40 198.20 194.97 
60 60 1 186 185.0835 180.15 170.77 171.18 188.41 
60 120 1 215.38 193.8255 189.21 192.83 206.53 199.65 
60 240 1 225 211.3095 214.42 230.13 214.53 213.74 
70 60 1   213.78 220.97 227.20 227.82 
70 120 1   222.29 239.41 233.47 230.71 
70 240 1   239.29 259.99 238.87 231.14  
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follows the same pattern as the thickness. The results show that the 
formation of nanotubes is highly dependent on the concentration of 
NH4F [61]. As it clearly seen, anodization voltage and electrolyte con-
centration are significantly affected the diameters of TiO2 nanotubes. 
The diameter of nanotubes can be increased by adjusting the applied 
voltage. Nanotube size varies greatly contingent on the type of elec-
trolyte, particularly its density. The nanotubes have filled the whole 
region of the samples and the average diameter of the nanotubes is 
changing from 70 to 225 nm as seen in Table 2. All the anodization 
properties are given and the TiO2 nanotube diameters are measured 
according to the SEM images. Same magnification images are given to 
show the difference between the diameters of the nanotubes. 

The thermionic emission (TE) method is used to examine the linear 
part of logarithmic I-V graphs at low voltages and is follows [62]: 

I = I0

[

exp
(

qV
nkT

− 1
)]

(10) 

Here q is the electron charge, k is the Boltzmann constant, T is the 
temperature, n is the ideality factor (n = 1 for ideal devices), and I0 is the 
reverse saturation current: 

I0 = AA*T2exp
(q∅b

kT
− 1

)
(11) 

Here A is the device area, A* is the Richardson constant and Φb is the 
effective Schottky barrier height (SBH). The SBH equation according to 
TE is as follows: 

∅b =
kT
q

ln
(

AA*T2

I0

)

(12) 

The current of sensor devices was measured with applying voltage 

sweep between 1 to − 1 V to see the effect of crystal structure (amor-
phous, anatase and rutile). As previously observed, the fluctuation in the 
I–V curve caused by H2 was normal for a Schottky diode-type sensor 
[63]. The electron transport from TiO2 to Pd established the SBH at the 
interface between Pd and TiO2 nanotubes, resulting in the establishment 
of a depletion area. The barrier height on the Pd side remains constant 
while the bias voltage is changed, whereas the barrier height on the TiO2 
side and the width of the exhausted layer rise under reverse bias. 
Environmental oxygen adsorbs on the surfaces of TiO2 nanotubes and 
Pd, absorbs electrons from the material, and ionizes to O− or O2− . When 
a reducing gas like H2 reacts with adsorbed oxygen, electrons are 
pumped back into the conduction band, lowering the barrier height 
[64]. As a result, raising the applied reverse bias could improve gas 
sensitivity since a higher barrier height could result in a larger drop in 
sensing resistance. However, even in 10% H2, a non-linear I–V curve was 
found, indicating the presence of a SBH at the interface between Pd and 
TiO2, while the barrier height was significantly reduced in 10% H2 
balanced with air compared to dry air for annealed at 700 ◦C nanotubes 
as given in Fig. 7a and b. The I-V characteristic of unannealed and 
annealed at 300 ◦C TiO2 also displayed Schottky-type behavior. 

In order to elucidate concentration depending on H2 gas sensing 
behavior, 0.05 V is applied to Pd/TiO2 nanotubes/ Ti sensor device 
structure and the current is measured continuously by changing the 
atmospheric condition of the measurement cell. Fig. 8a shows the cur-
rent of TiO2 nanotubes annealed at 300 ◦C as a function of time by 
enhancing H2 concentration from 0.5% to 10%. After the nanotube de-
vice exposed to 0.5% H2, the current of the device is sharply increased 
and then come to saturation value from 1.02 μA to 0.83 mA. Subse-
quently, while the other indicated concentration (1, 2, 5 and 10%) of H2 
exposed to measurement cell, similarly the current of the device 

Reverse bias (in air) Reverse bias (in H2)

TiO2

ϕ’- χ-ΔV

ϕ‘

O
- 

O
- 

O
-

TiO2

ϕ’’- χ-ΔV
ϕ‘’

Pd

H
+

H
+

H
- 

H
-

Pd

(b)

(a)

Fig. 7. (a) The I-V characteristic of the TiO2 nanotubes sensors under dry air and 10% H2 conditions for annealed at 700 ◦C, (b) H2 sensing mechanism based on the 
height of the SBH at the interface between Pd and TiO2 nanotubes. 
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increased sharply and then came to saturation. The increase in the 
current by exposure to H2 could be explained with the decrease of the 
barrier height between TiO2 and Pd. During cleaning the measurement 
cell with dry air, the current of the nanotubes decreased and came to 
baseline value as seen in Fig. 8a. Sensor response could be defined as; 

Sensor Response (R) =
ΔI
IA

=
IH − IA

IA
(13)  

where IH is the current after the sensor is exposed to H2, and IA is the 
baseline value of the sensor exposed to dry air. The sensor responses of 
as-prepared, annnealed at 300 ◦C and 700 ◦C are increased with 
increasing H2 concentration as given in Fig. 8b. The highest sensor 
response is observed for anatase TiO2 nanotubes that annealed at 300 ◦C 
except for 10% H2 concentration. Previously, anatase TiO2 nanotubes 
that synthesized with anodization method from Ti thin film showed the 
best sensitivity for volatile organic compound (VOC) sensing [65]. The 
concentration of 1% H2 gas exposed to the sensor device that annealed at 
300 ◦C and the sensor response has no significant change for long-term 
sensitivity as a result of eight-day measurement as shown in Fig. 8c. In 
order to determine the selectivity of the TiO2 nanotubes device that 

annealed at 300 ◦C, the device are tested for the relative humidity, 
ethanol and acetone sensing. The concentration of the relative humidity, 
ethanol and acetone are 50%, 1% and 2%, respectively at room tem-
perature. The sensor response of is around 0.1 which can be negligibly 
small compare to the 1% H2 exposure as shown in Fig. 8d. Therefore, 
these results shows that nanotubes device is not sensitive to the hu-
midity, ethanol and acetone. 

Anodic oxidation is a simple and efficient method for creating highly 
ordered, tube-shaped porous TiO2 arrays at the nanoscale. Furthermore, 
anodization parameters such as anodization time, voltage and concen-
tration can be used to modify the morphology of TiO2 nanotubes such as 
nanotube diameter, thickness, and length. Sreekantan et al. reported 
that the anodization voltage really plays a significant role in deter-
mining the homogeneity and uniformity of the size distribution of the 
nanotube in their study using an anodization voltage between 5 V and 
30 V. They emphasized that as the anodization voltage increased, the 
two tubes combined to form a single tube, thus changing the tube radius 
and homogeneity [66]. In this study, it is seen that the tube radii are 
homogeneous and in a single form at low anodization voltage up to 40 V. 
However, as the applied voltage increases, it is seen that the tubes 

Fig. 8. (a) The current versus time for TiO2 nanotubes annealed at 300 ◦C by exposing different concentrations of H2 and (b) sensor response as a function of 
concentration for all sensor devices at room temperature (c) long-term sensitivity as a function of time (d) sensor response for the different gas. 
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coalesce and their diameters vary between 50 and 200 nm. Thus, it is 
seen that the anodization voltage changes tube homogeneity and uni-
formity at high anodization voltage. And also, numerous studies show 

that nanotube diameters are quite sensitive to changing anodization 
conditions [67]. Therefore these parameters are used to simulate and 
prediction of nanotubes diameters. Thirty different TiO2 nanotubes were 
fabricated and their detailed anodization properties were given in 
Table 2. It is clearly seen that the average diameters of the produced 
TiO2 nanotubes increase depending on the anodization voltage and 
time. In fact, increasing the NH4F ratio of the electrolyte generally 
resulted in an increase in the average TiO2 nanotubes diameters. Linear 
SVM, Quadratic SVM, 1HL ANN and 2HL ANN models are used for the 
simulation and prediction process of the nanotube diameter data of 
experimental samples. The simulation and prediction results of nano-
tube diameters obtained from the proposed models for different anod-
ization voltage, time and electrolyte composition comparatively. The 
anodization voltage of 70 V was not obtained experimentally for both 
0.5% and 1% electrolyte compositions. Therefore, the TiO2 nanotubes 
diameter at 70 V anodization voltage were predicted using ANN and 
SVM models and analytical results by using Eq. (9) are also given in 
Table 2. 

Nanotube diameter versus voltage graphs are given in Fig. 9 for the 
proposed SVM and ANN models to show how the experimental and 
simulation results close to each other with different colors and symbols 
to increase visibility. As given in the figure, simulation and experimental 
outcomes are coincided more with using of the 1HL ANN model. 

Residual plot is also shown in Fig. 10 for analytical model and Fig. 11 
for ANN and SVM models to show errors between experimental, 
analytical and simulation data. As shown from the residual plots, 
although residual values are obtained between ±30 for analytical 

Fig. 9. Experimental and simulation results of nanotube diameter versus voltage.  

Fig. 10. Residuals between analytical and experimental results of nano-
tube diameter. 
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model, linear SVM, quadratic SVM and 2HL ANN, it is obtained between 
+30 and − 20 for the 1HL ANN model. 

RMSE and R2 values are also obtained for all SVM and ANN models to 
show which model is the best to simulate and predict experimental data 
in the future. These rates are donated in Table 3 relatively. The amount 
of RMSE and determination are predictable to turn out to be around 1 
and 0 consistently. The best and worst R2 values are obtained as 0.96 for 
1HL ANN and 0.92 for the Quadratic SVM model for testing and training 
outcomes of the model. The best and worst RMSE values are 11.816 for 
1HL ANN and 15.247 for the 2HL ANN model. 

4. Conclusions 

In conclusion, TiO2 nanotubes with inner diameters ranging from 70 
to 225 nm were effectively produced on titanium foil using anodic 

oxidation, and the effect of the crystal structure on the H2 sensing 
characteristics of TiO2 nanotubes-based sensors were examined. Unan-
nealed and annealed TiO2 nanotubes displayed a typical Schottky-type 
behavior from I-V measurement under dry air condition and exposed 
to 10% H2. At ambient temperature, the hydrogen sensing characteris-
tics of TiO2 nanotubes in the form of a Ti/TiO2 nanotubes/Pd device 
were investigated with concertation ranging from 0.5 to 10% depending 
on the crystalline phase. Anatase crystalline TiO2 nanotubes have the 
maximum sensor response. We also afforded to objective methodologies 
for designing better simulation and prediction for nanotube diameter 
applications. For this purpose, the nanotube diameter is analyzed and 
predicted from voltage, time and electrolyte composition by using the 
proposed analytical and simulation models. All of the simulation, 
analytical and experimental results are compared and a very high sim-
ilarity is obtained for the simulation based 1HL ANN model. The simi-
larity between results is shown with residual and RMSE values. These 
results show us that the proposed models can be used for the prediction 
of nanotube diameters without doing any further experiments. 

Research data policy and data availability statements 

Data sharing not applicable to this article as no datasets were 
generated or analyzed during the current study. 

Fig. 11. Residuals between experimental and simulation results of nanotube diameter.  

Table 3 
RMSE and R2 values for ANN and SVM models.  

Model Linear-SVM Quadratic-SVM 2HL-ANN 1HL-ANN 

RMSE 14.082 14.741 15.247 11.816 
R2 0.93 0.92 0.93 0.96  
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[8] N. Kilinç, E. Şennik, D. Atilla, A.G. Gürek, V. Ahsen, Z.Z. Öztürk, Effect of ambient 
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