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ABSTRACT: In this paper, we present a generalization of well-known k-Fibonacci sequence. Namely, 
we defined generalized k-Fibonacci sequence. This sequence generalizes others, k-Fibonacci sequence, 
classical Fibonacci sequence, Pell sequence and Jacobsthal sequence. We establish some of the 
interesting properties of generalized k-Fibonacci sequence. Also, we obtain a generating function for 
them.  
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1. INTRODUCTION 

It is well-known that the Fibonacci sequence is most prominent examples of recursive sequence. 
The Fibonacci sequence is famous for possessing wonderful and amazing properties. The 
Fibonacci appear in numerous mathematical problems. Fibonacci composed a number text in 
which he did important work in number theory and the solution of algebraic equations. The 
book for which he is most famous in the “Liber abaci” published in 1202. In the third section 
of the book, he posed the equation of rabbit problem which is known as the first mathematical 
model for population growth. From the statement of rabbit problem, the famous Fibonacci 
numbers can be derived, 

 

 
 
This sequence in which each number is the sum of the two preceding numbers has proved 
extremely fruitful and appears in different areas in Mathematics and Science. 

The Fibonacci numbers nF  are terms of the sequence  0,1,1,2,3,5,... wherein each term is the 

sum of the two previous terms, beginning with the values 0 0F  and 1 1F  . 

The Fibonacci sequence [11], is defined by the recurrence relation  

1 2 0 1, 2 0, 1n n nF F F n with F F                  (1) 
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The Lucas sequence [11],is defined by the recurrence relation 

1 2 0 1, 2 2, 1n n nL L L n with L L                         (2) 

The Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, Jacobsthal 
sequence and Jacobsthal-Lucas sequence are the most prominent examples of recursive 
sequences. The second-order recurrence sequence has been generalized in two ways mainly, 
first by preserving the initial conditions and second by preserving the recurrence relation. 

Kalman and Mena [10], generalize the Fibonacci sequence by 

1 2 0 1, 2 0, 1n n nF aF bF n with F F                (3) 

Horadam [7], defined generalized Fibonacci sequence  nH by 

1 2 1 2, 3 ,n n nH H H n with H p H p q                  (4)            

where p and q are arbitrary integers. 

The k-Fibonacci numbers defined by Falcon and Plaza [2, 5], for any positive real number k, 
the k-Fibonacci sequence is defined recurrently by 

, , 1 , 2 ,0 ,1, 2 0, 1k n k n k n k kF k F F n with F F                (5) 

The k-Lucas numbers defined by Falcon [3], 

, , 1 , 2 ,0 ,1, 2 2,k n k n k n k kL k L L n with L L k                (6) 

Most of the authors introduced Fibonacci pattern-based sequences in many ways which are 
known as Fibonacci-Like sequences and k-Fibonacci-like sequences [12, 13, 18, 20, 21]. 

Generalized Fibonacci sequence [6], is defined as 

1 2 0 1, 2 ,k k kF pF qF k with F a F b                 (7) 

( , )p q - Fibonacci numbers [15], is defined as 

, , , , 1 , , 2 , ,0 , ,, 2 0, 1p q n p q n p q n p q p q nF pF bF n with F F               (8) 

( , )p q - Lucas numbers [16], is defined as 

, , , , 1 , , 2 , ,0 , ,, 2 2,p q n p q n p q n p q p q nL pL bL n with L L p               (9) 

Generalized ( , )p q -Fibonacci-Like sequence [17], is defined by recurrence relation 

, , , , 1 , , 2 , ,0 , ,, 2 2 , 1p q n p q n p q n p q p q nS pS qS n with S k S kp             (10) 

Goksal Bilgici [1], defined new generalizations of Fibonacci and Lucas sequences 

2
1 2 0 12 ( ) , 2 0, 1k k kf af b a f k with f f               (11) 

2
1 2 0 12 ( ) , 2 2, 2k k kl al b a l k with l l a                (12) 
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In this paper, we introduce a generalized k−Fibonacci sequence. The generalized k−Fibonacci 
numbers have lots of properties. 

 

2. THE GENERALIZED k-FIBONACCI SEQUENCE 

In this section, we define the generalized k-Fibonacci sequence and its particular cases. 

Definition 1: Let k be any positive real number and ,p q are positive integer. For  2n  , the 

generalized k-Fibonacci sequence  ,k nF , is defined by 

, , 1 , 2k n k n k nF pkF qF               (13)
                      

 

with initial conditions ,0 ,1,k kF a F b  . 

The first few generalized k-Fibonacci numbers are 

,2kF pkb aq   

2 2
,3kF p k b pkqa qb    

3 3 2 2 2
,4 2kF p k b p k qa pkqb aq     

4 4 3 3 2 2 2 2
,5 3 2kF p k b p k qa p k qb pkaq bq      

... 

Particular cases of generalized k-Fibonacci sequence are 

 If 0 , 1,a p q b    the k-Fibonacci sequence is obtained  

,0 ,10, 1k kF F  and , , 1 , 2 ,k n k n k nF kF F   for 2 :n   

   2 3 4 2
, 0,1, , 1, 2 , 3 1,...k n n N

F k k k k k k


      

 If  0 , 1,a k p q b     the classic Fibonacci sequence is obtained 

0 10, 1F F  and  1 2 ,n n nF F F   for  2 :n   

   0,1,1, 2,3,5,8,...n n N
F


  

 If  0 , 2, 1,a k p q b     the classic Pell sequence appears 

0 10, 1P P  and  1 22 ,n n nP P P   for  2 :n   

   0,1, 2,5,12, 29,70,...n n N
P


  

 If  0 , 2, 1,a q p k b     the classic Jacobsthal sequence appears 

0 10, 1J J  and  1 22 ,n n nJ J J   for  2 :n   

   0,1,1,3,5,11, 21,...n n N
J


  

 If  0 , 3, 1,a k p q b     the following sequence appears 

0 10, 1H H  and  1 23 ,n n nH H H   for  2 :n   

    0,1,3,10,33,109,...n n N
H
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3. PROPERTIES OF THE GENERALIZED k-FIBONACCI SEQUENCE  

In this section, we introduce and prove some interesting properties of the generalized k-
Fibonacci sequence. 

3.1. First Explicit Formula for The Generalized K-Fibonacci Sequence 

In the 19th century, the French mathematician Binet devised two remarkable analytical 
formulas for the Fibonacci and Lucas numbers. In our case, Binet’s formula allows us to express 
the generalized k-Fibonacci numbers in the function of the roots 1

n and  2
n of the following 

characteristic equation, associated with the recurrence relation (13): 

2x pkx q                                                                                     (14) 

3.1.1. Binet’s formula 

Theorem 1:The nth generalized k-Fibonacci number is given by 

, 1 2
n n

k nF A B                           (15) 

where 1
n and  2

n are the roots of the characteristic equation (13) , 1 2   and  

2 2 4

b a
A

p k q





 and 

2 2 4

a b
B

p k q

 



. 

Proof: The roots of the characteristic equation (13) are  

2 2

1

4

2

pk p k q 
   and 

2 2

2

4

2

pk p k q 
  , 

we use the Principle of Mathematical Induction (PMI) on n. The result is true for 
0 1n and n  by hypothesis. Assume that it is true for r such that 0 1r s   , then 

 , 1 2
r r

k rF A B                         

It follows from the definition of generalized k-Fibonacci numbers and equation (15) 

2 2
, 2 , 1 , 1 2

s s
k s k s k sF pkF qF A B 

                

Thus, the formula is true for any positive integer. 

Particular cases are: 

 If  0 , 1,a p q b    we obtained k-Fibonacci numbers and then   
2 4

2

k k  
 is known as the k-metallic ratio. 

 If  0 , 1,a k p q b     we obtained classic Fibonacci numbers and then   

1 5

2
 
 is well known as the golden ratio,  is also denoted by  . 

 If  0 , 2, 1,a k p q b     we obtained classic Pell numbers and then 

1 2   is well known as the silver ratio. 
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 If  0 , 3, 1,a k p q b     for the sequence  nH , and then 

3 13

2
 
 is known as the bronze ratio. 

Proposition 2:  For any integer  1n  , 

 

2 1
1 1 1

2 1
2 2 2

n n n

n n n

pk q

pk q

 

 

    

    
                    (16) 

Proof: Since 1
n and  2

n are the roots of the characteristic equation (13), then 

2 2
1 1 2 2,pk q pk q         

now, multiplying both sides of these equations by  1
n and  2

n respectively, we obtain the 

desired result. 

Lemma 3:  If r is a positive integer then  , , 11 2
2 2

1 2

r r
k r k rbF aF

b a q abpk
 


   

      (17) 

Proof: Using the Principle of Mathematical Induction (PMI) on n, the proof is clear. 

Theorem 4: If

2

1 2 1 2 1 2

1 2 1 2 1 2

n n n r n r n r n r

V
            

              
, then 

 
2

, , 1

2 2

n r k r k rbF aF
V q

b a q abpk
  

     
           (18) 

Proof: Using the roots of the characteristic equation (13), the proof is clear. 

Proposition 5:        2 2 2 2 2 2 2 2
1 2 4 2 2A B p k q p k q ab aq bpk             (19)  

Proof: Since 1
n and  2

n are the roots of the characteristic equation (13) and  

2 2 4

b a
A

p k q





 and 

2 2 4

a b
B

p k q

 



, then 

       
 

22 2 2 2
1 2 1 2 1 2 1 22 2 2 2

1 2 2 2

2 2

4

b a ab
A B

p k q

         
   


 

     2 2 2 2 2 2 2 2
1 2 1 24 2 2 2A B p k q b pk q a q abqpk           

Finally, by simplifying the last expression, Eq. (19) is proven. 

Theorem 6: If 1 2
0

1 2

i i
n

i
T



 


  , then 
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   , 1 , , 2 ,

2 2

1
1

1
k n k n k n k nb F F a F F

T
pk q b a q abpk

 
   
  
     

             (20) 

Proof: Since 1
n and  2

n are the roots of the characteristic equation (13), now by summing up 

the geometric partial sums 
0

n
i
j

i

 for 1, 2j  , we obtain 

1 1
1 2

1 2 1 2

1 11

1 1

n n

T
     

        
 

1 1
1 2 1 2

1 2 1 2

1
1

1

n n n n

pk q

     
         

 

   , 1 , , 2 ,

2 2

1
1

1
k n k n k n k nb F F a F F

T
pk q b a q abpk

 
   
  
     

 

This completes the proof. 

3.1.2. Limit of the quotient of two consecutive terms 

A useful property in these sequences is that the limit of the quotient of two consecutive terms 
is equal to the positive root of the corresponding characteristic equation. 

Proposition 7:  ,
1

, 1

lim k n

n
k n

F

F


                 (21) 

Proof: Using Eq. (13), 

2

, 11 2

, 1 1 2 2

1 1 2

1

lim lim lim
1 1

n

r r
k n

nr rn n n
k n

B
F AA B

F A B B
A

  


 
       

    
     

 

and taking into account that  2

1

lim 0
n

n

 
  

, since 2 1  , Eq. (21) is obtained. 

Particular cases are: 

 If  0 , 1,a k p q b     we obtained, 
1

lim n

n
n

F

F





 . 

 If  0 , 2, 1,a k p q b     we obtained 
1

lim n

n
n

P

P





 . 

 If  0 , 3, 1,a k p q b     we obtained 
1

lim n

n
n

H

H





 . 
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3.1.3. Catalan's identity 

Catalan's identity for Fibonacci numbers was founded in 1879 by Eugene Charles Catalan a 
Belgian mathematician who worked for the Belgian Academy of Science in the field of number 
theory. 

 

Proposition 8:  (Catalan’s identity) 
2

, , 12
, , , 2 2

( )
( )

( )
k n k rn r

k n k n r k n r

bF aF
F F F q

b a q abpk


 


  

 
         (22) 

Proof: By using Eq. (13) in the left-hand side (LHS) of Eq. (22), and taking into account that 

1 2 q   it is obtained 

      2

1 2 1 2 1 2LHS n n n r n r n r n rA B A B A B               

   1 2 1 2 1 22
n r r r rAB          

  1 2

2 1

2
r r

n

r r
AB q

                   
 

    
 

2

1 2
r r

n

rAB q
q

 
  


 

 
2

2 2 1 2

1 2

( )
r r

n r
b a q abpk q

   
       

 

Finally, by using Eq. (17),  

2
, , 1

2 2

( )
( )

( )
k n k rn r

bF aF
q

b a q abpk
 

 
 

 

This completes the proof. 

3.1.4. Cassini’s identity 

This is one of the oldest identities involving the Fibonacci numbers. It was discovered in 1680 
by Jean-Dominique Cassini a French astronomer. 

Proposition 9: (Cassini’s identity or Simpson’s identity)            

2 1 2 2
, , 1 , 1 ( ) ( )n

k n k n k nF F F q b a q abpk
                             (23) 

Proof: Taking 1r  in Catalan’s identity the proof is completed. 

3.1.5. d’ocagnes’s identity 

Proposition 10: (d’ocagnes’s Identity)            

1
, , 1 , 1 , , , 1( ) ( )n

k m k n k m k n k m n k m nF F F F q bF aF
                             (24) 

where n m integers. 
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Proof: Using the Binet’s formula, the proof is clear. 

 If  0 , 1,a k p q b     we obtained d’ocagnes’s Identity for classic Fibonacci 

numbers,  1
1 1 ( 1)n

m n m n m nF F F F F
     .                       

 

3.2. Generalized İdentity for Generalized K-Fibonacci Sequence 

In this section, we present generalized identity for generalized k-Fibonacci sequence, from 
which we obtain Catlan’s identity, Cassini’s identity and d’Ocagne’s identity. 

Theorem 11: If , , , ,k m k n k m r k m rY F F F F   and ,k nF be the generalized k-Fibonacci numbers, 

then 
  

 
, , 1 , , 1

2 2
( )

k r k r k n r m k n r mm r
bF aF bF aF

Y q
b a q abpk

     
 

 
 

       (25) 

where , ,n m r nonnegative integers. 

Proof: Using the Binet’s formula, the proof is clear. 

Eq. (25), is generalized of Catalan’s, Cassini’s and d’ocagnes’s identities. 

 If 0, 1,a k p q b     we have ( 1)m r
m n m r n r r n r mF F F F F F

       

which is given for Fibonacci numbers by Spivey in [14]. 

3.3. A Second Formula for The Generalized K-Fibonacci Sequence in Terms of Their 
Characteristic Roots 

Theorem 12:     
1

2
1 2 2 2

1 2
0

1
4

2 12 1

n

in in n
n

i

n
pk p k q

i

 
  

 



 
      

        (26) 

where  a   is the floor function of a that is   sup.a n N n a     and says the integer part of 

a, for  0a  . 

Proof: Since 1
n and  2

n are the roots of the characteristic equation 2 0x pkx q   , using the 

value of 1
n and  2

n , we get
2 2 2 2

1 2

4 4

2 2

n n

n n pk p k q pk p k q              
        

 

from where, by developing the nth powers, it follows: 

   
1

2
1 2 2 2

1 2
0

1
4

2 12 1

n

in in n
n

i

n
pk p k q

i

 
  

 



 
      

  

Particular cases are: 

 If 1,p q  for the classical Fibonacci sequence, we have 

 
1

2

1 2
0

1
5

2 12 1

n

in n
n

i

n

i
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 If 2, 1,k p q   for the Pell sequence, we have 

     
1 1

2 2
1 2

1 2
0 0

1
2 8 2

2 1 2 12 1

n n

n i i in n
n

i i

n n

i i

    
      

 

 

   
           

                                             

 If 3, 1,k p q   for the sequence  nH , we have 

   
1 1

12 2
1 2

1 2
0 0

1 3 13
3 13

2 1 2 12 1 2 9

n n
n i

n i in n
n

i i

n n

i i

    
      

 

 

                       
   

 

4. SUM OF FIRST TERMS OF THE GENERALIZED k-FIBONACCI SEQUENCE 

Theorem 13:  Let  ,k nF be the nth generalized k-Fibonacci number then 

, , 1
,

1 1

n
k n k n

k s
s

F qF apk a b
F

pk q




   


            (27)       

Proof: Using the Binet’s formula for the generalized k-Fibonacci numbers, 

, 1 2
1 1

n n
s s

k s
s s

F A B
 

      

1 2
1 1

n n
s s

s s

A B
 

      

1 2

1 2

1 1

1 1

s s

A B
    

        
 

1 1
1 2 2 1 1 2 1 2

1 2

( ) ( ) ( ) ( )

(1 )(1 )

s s s sA B A B A B A B             


 
 

, , 1

1
k n k nF qF apk a b

pk q
   


 

 

Particular cases are: 

 If  0 , 1,a k p q b     for the  classic Fibonacci sequence, we have: 

2
1

1
n

s n
s

F F 


  . 

 If  0 , 2, 1,a k p q b     for the  Pell sequence, we have: 

 1
1

1
1

2

n

s n n
s

P P P


   . 

 If  0 , 3, 1,a k p q b     the sum of the first elements of the sequence  nH is: 

 1
1

1
1

3

n

s n n
s

H H H
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5. GENERATING FUNCTION FOR GENERALIZED k-FIBONACCI SEQUENCE  

The function is  2 3
0 1 2 3( ) ... ...n

nF x a a x a x a x a x       called the generating function for 

the sequence   0 1 2, , ,...a a a . Generating functions provide a powerful tool for solving linear 

recurrence relations with constant coefficients.  

 Let  , 2

( )
( )

1k n

a x b apk
F x

pkx qx

 


 
                    (28)        

Particular cases are: 

 If  0 , 1,a p q b    generating function of the k- Fibonacci sequence: 

, 2
( )

1k n

x
F x

kx x


 
. 

 If  0 , 1,a k p q b     generating function of the classic Fibonacci sequence: 

2
( )

1n

x
F x

x x


 
. 

 If  0 , 2, 1,a k p q b     generating function of the Pell sequence: 

2
( )

1 2n

x
P x

x x


 
. 

 If  0 , 3, 1,a k p q b     generating function of the sequence  nH : 

2
( )

1 3n

x
H x

x x


 
. 

 

6. CONCLUSIONS 

In this study new generalized k-Fibonacci sequences have been introduced and studied. Many 
of the properties of these sequences are proved by simple algebra. Compactly and directly many 
formulas of such numbers have been deduced. 
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